Tìm x \(\in\)N
\(16\le2^{x-3}\le64\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B) \(1< 3^n< 81\Rightarrow1< 3^n< 3^4\Leftrightarrow n\in\left\{1;2;3\right\}\)
C) \(4\le2^n\le64\Rightarrow2^2\le2^n\le2^6\Leftrightarrow n\in\left\{2;3;4;5;6\right\}\)
D) \(4\le4^n\le256\Rightarrow4^1\le4^n\le4^4\Leftrightarrow n\in\left\{1;2;3;4\right\}\)
phần A thì mình chịu
x_<2--> x+1/2_<5/2 mà -|x-2/3|_<0 nên Max N = 5/2 khi và chỉ khi x=2
\(-\left|x-\frac{2}{3}\right|\le0\Rightarrow\frac{1}{2}-\left|x-\frac{2}{3}\right|\le\frac{1}{2}\)
\(\Rightarrow x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\le\frac{1}{2}+x\le\frac{1}{2}+2=\frac{5}{2}\)
Dấu "=" xảy ra <=> x=2/3
Vậy MaxN=5/2 <=>x=2/3
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)
a,\(8< 2^x\le2^9.2^{-5}\)
\(2^3< 2^x\le2^4\)
\(\Rightarrow x=4\)
b, \(27< 81^3.3^x< 243\)
\(3^3< 3^{12-x}< 3^5\)
\(\Rightarrow3< 12-x< 5\)
12-x=4
x=8
c,\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)
\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Rightarrow x>5\)
x=6;7;8........
\(2^4\le2^{x-3}\le2^6\Rightarrow4\le x-3\le6\Leftrightarrow7\le x\le9\) mà x là số tự nhiên => x =8
\(16\le2^{x-3}\le64\)
Ta co: \(2^4\le2^{x-3}\le2^6\)
=> \(4\le x-3\le6\)
Th1: x-3=4
x=4+3=7
Th2: x-3=5
x=5+3=8
Th3: x-3=6
x=6+3=9