Cho 2a+b=2. Tìm GTNN của ab. (Giúp mình với, cảm ơn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng BĐT Cô-si dạng Engel,ta có :
\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge a+b+c\)
\(\Rightarrow6=a+b+c+ab+bc+ac\le\sqrt{3\left(a^2+b^2+c^2\right)}+a^2+b^2+c^2\)
Đặt \(\sqrt{3\left(a^2+b^2+c^2\right)}=t\Rightarrow a^2+b^2+c^2=\frac{t^2}{3}\)
\(\Rightarrow t+\frac{t^2}{3}\ge6\Leftrightarrow3t+t^2-18\ge0\Leftrightarrow\left(t-3\right)\left(t+6\right)\ge0\)
\(\Rightarrow t-3\ge0\Rightarrow t\ge3\)( vì t + 6 > 0 )
\(\Rightarrow P\ge a^2+b^2+c^2=\frac{t^2}{3}\ge3\)
Vậy GTNN của P là 3 khi a = b = c = 1

\(P=\frac{2}{-4x^2+8x-5}=\frac{2}{-\left(4x^2-8x+5\right)}\)
\(=\frac{2}{-\left(4x^2-8x+4+1\right)}\)\(=\frac{2}{-4\left(x+1\right)^2-1}\)
\(\ge\frac{2}{-1}=-2\)\(\Rightarrow P\ge-2\)
Dấu = khi \(x=-1\)
Vậy MinP=-2 khi x=-1

Ta có:
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2}{\frac{1}{a}+\frac{1}{c}}=\frac{2ac}{a+c}\)
Thế \(b=\frac{2ac}{a+c}\) vào M, ta được:
\(M=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{1+\frac{2c}{a+c}}{2-\frac{2c}{a+c}}+\frac{1+\frac{2a}{a+c}}{2-\frac{2a}{a+c}}\)
\(M=\frac{\left(a+c\right)+2c}{2\left(a+c\right)-2c}+\frac{\left(a+c\right)+2a}{2\left(a+c\right)-2a}=\frac{a+3c}{2a}+\frac{3a+c}{2c}\)
\(M+2=\frac{a+3c}{2a}+1+\frac{3a+c}{2c}+1=\frac{3a+3c}{2a}+\frac{3a+3c}{2c}=\frac{3}{2}\left(a+c\right)\left(\frac{1}{a}+\frac{1}{c}\right)\)
\(M+2=\frac{3}{2}\left(1+\frac{a}{c}+\frac{c}{a}+1\right)=\frac{3}{2}\left(2+\frac{a}{c}+\frac{c}{a}\right)\)
Xét \(\frac{a}{c}+\frac{c}{a}\ge2\Leftrightarrow...\)(bạn tự biến đổi tương đương để chứng minh nó nhé)
(ĐK xảy ra dấu "=": a=c)
Do đó \(M+2=\frac{3}{2}\left(1+\frac{a}{c}+\frac{c}{a}+1\right)=\frac{3}{2}\left(2+\frac{a}{c}+\frac{c}{a}\right)\ge\frac{3}{2}\left(2+2\right)=6\Leftrightarrow M\ge4\)
Vậy GTNN của \(M=4\)khi \(a=c\Leftrightarrow\frac{2}{b}=\frac{2}{a}\Leftrightarrow b=a=c\)
Chúc bạn học tốt!
P/S: bài này khó thật đấy! Mình chuyên toán 9 mà giải hết nửa tiếng mới xong :D!

\(B=|2014-2x|+|2016-2x|\)
\(=|2014-2x|+|2x-2016|\ge|2014-2x+2x-2016|\)
Hay \(B\ge2\)
Dấu"="xảy ra \(\Leftrightarrow\left(2014-2x\right)\left(2x-2016\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}2014-2x\ge0\\2x-2016\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2014-2x< 0\\2x-2016< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\le2014\\2x\ge2016\end{cases}\left(loai\right)}\)hoặc\(\hept{\begin{cases}2x>2014\\2x< 2016\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1007\\x< 1008\end{cases}}\)
\(\Leftrightarrow1007< x< 1008\)
Vậy \(B_{min}=2\)\(\Leftrightarrow1007< x< 1008\)

Ta có ; \(A=\frac{3x^2-2x-1}{\left(x+1\right)^2}\) .Đặt \(y=x+1\Rightarrow x=y-1\), thay vào A :
\(A=\frac{3\left(y-1\right)^2-2\left(y-1\right)-1}{y^2}=\frac{3y^2-8y+4}{y^2}=\frac{4}{y^2}-\frac{8}{y}+3\)
Lại đặt \(t=\frac{1}{y}\), \(A=4t^2-8t+3=4\left(t^2-2t+1\right)-1=4\left(t-1\right)^2-1\ge-1\)
Dấu "=" xảy ra khi và chỉ khi t = 1 <=> y = 1 <=> x = 0
Vậy A đạt giá trị nhỏ nhất bằng -1 khi x = 0

x2 - 4x + 2 = ( x2 - 4x + 4 ) - 2 = ( x - 2 )2 - 2 ≥ -2 ∀ x
Dấu "=" xảy ra <=> x = 2 . Vậy GTNN của bthuc = -2
x^2 - 4x + 2
= x^2 - 4x + 4 - 2
= ( x - 2 ) ^2 - 2
\(\left(x-2\right)^2\ge0\forall x\)
\(\left(x-2\right)^2-2\ge-2\)
Dấu = xảy ra khi và chỉ khi
x - 2 = 0
x = 0 + 2
x = 2
vậy min = -2 khi và chỉ khi x = 2

Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
Bài của bạn phải là tìm GTLN chứ không phải GTNN nhé :) Và bạn cần thêm điều kiện a,b là các số dương nữa :)
Áp dụng bất đẳng thức Cauchy , ta có ; \(2=2a+b\ge2\sqrt{2a.b}\Rightarrow ab\le\frac{1}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a,b>0\\2a+b=2\\2a=b\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=1\end{cases}}\)
Vậy ab đạt giá trị lớn nhất bằng \(\frac{1}{2}\) tại \(\hept{\begin{cases}a=\frac{1}{2}\\b=1\end{cases}}\)