K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=AC=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

=>\(AD=3\cdot1=3\left(cm\right);DC=5\cdot1=5\left(cm\right)\)

b: Xét ΔBAH có BI là phân giác

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc ABH chung

Do đó: ΔBHA~ΔBAC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

\(\widehat{ABD}=\widehat{HBI}\)

Do đó: ΔBAD~ΔBHI

=>\(\dfrac{BA}{BH}=\dfrac{BD}{BI}\)

=>\(BA\cdot BI=BD\cdot BH\)

Ta có: ΔBAD~ΔBHI

=>\(\widehat{BDA}=\widehat{BIH}\)

mà \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

23 tháng 3 2022

minfh làm rồi nhưng đến chỗ tỉ số thì mình không hiểu phải làm như nào để ra đúng cái chu vi ấy

 

P
Phong
CTVHS
29 tháng 10 2023

Xét tam giác ABC vuông tại A áp dụn Py-ta-go ta có: 

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)

\(\Rightarrow\widehat{B}\approx53^o\)  

\(\Rightarrow\widehat{C}=90^o-53^o\approx37^o\)

20 tháng 2 2022

Xét tam giác ABC vuông có

\(AB^2+AC^2=BC^=>BC^2=100=>BC=10\) (cm)

Xét 2 tam giác ADB và ADC có

\(ADB=ADC=90\)độ

\(ABD=ACD=90:2=45\)độ

=>Đồng dạng theo trường hợp gg

=>\(BD=DC=BC/2=10/2=5\)

=>Xét tam giác ADB vuông có

\(AD^2+BD^2=AB^2=>AD^2=11=>AD=căn11\)

Chúc em học giỏi

1 tháng 6 2021

Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

Vì AD là phân giác \(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}CD\)

Ta có: \(BD+CD=BC\Rightarrow\dfrac{3}{4}CD+CD=10\Rightarrow\dfrac{7}{4}CD=10\Rightarrow CD=\dfrac{40}{7}\)

\(\Rightarrow BD=\dfrac{3}{4}.\dfrac{40}{7}=\dfrac{30}{7}\)

AH=6*8/10=4,8cm

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\cos C=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)

\(\tan C=\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\cot C=\dfrac{AC}{AB}=\dfrac{4}{3}\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

d: BM/CM=AB/AC=3/4

=>4BM=3CM

mà BM+CM=10

=>CM=40/7cm;BM=30/7cm