tìm các cặp số nguyên x, y thỏa mãn:
2xy + x + y = 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+8\left(x-y\right)+16=3-2y^2\)
\(\Leftrightarrow\left(x-y\right)^2+8\left(x-y\right)+16=3-2y^2\)
\(\Leftrightarrow\left(x-y+4\right)^2=3-2y^2\) (1)
Do \(\left(x-y+4\right)^2\ge0;\forall x,y\)
\(\Rightarrow3-2y^2\ge0\Rightarrow y^2\le\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;0;1\right\}\)
- Với \(y=-1\) thay vào (1):
\(\left(x+5\right)^2=1\Rightarrow\left[{}\begin{matrix}x+5=1\\x+5=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-4\\x=-6\end{matrix}\right.\)
- Với \(y=1\) thay vào (1):
\(\Rightarrow\left(x+3\right)^2=1\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
- Với \(y=0\)
\(\Rightarrow\left(x+4\right)^2=3\) (ko có nghiệm nguyên do 3 ko phải SCP)
\(2y^2+2xy+x+3y-13=0\)
\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)
\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)
\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)
Rồi bạn làm từng cặp ra nhé!
\(x-y+2xy=3\)
\(\Rightarrow2x-2y+4xy=6\)
\(\Rightarrow2x-2y+4xy-1=5\)
\(\Rightarrow\left(2x+4xy\right)-\left(2y+1\right)=5\)
\(\Rightarrow2x\left(2y+1\right)-1\left(2y+1\right)=5\)
\(\Rightarrow\left(2x-1\right)\left(2y+1\right)=5\)
\(x-y+2xy=3\)
\(\Leftrightarrow2\left(x-y+2xy\right)=2\times3\)
\(\Leftrightarrow2x-2y+4xy=6\)
\(\Leftrightarrow2x-2y+4xy-1=5\)
\(\Leftrightarrow\left(2x-4xy\right)-\left(2y+1\right)=5\)
\(\Leftrightarrow2x\left(2y+1\right)-\left(2y+1\right)=5\)
\(\Leftrightarrow\left(2x-1\right)\left(2y+1\right)=5\)
Bạn tự lập bảng để tìm nghiệm nhé
Gợi ý:
\(2xy+14x+y=33\)
\(\Rightarrow2x\left(y+7\right)+y+7=33+7\)
\(\Rightarrow\left(2x+1\right)\left(y+7\right)=40\)
\(\Rightarrow\left(2x+1;y+7\right)\inƯ\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Đến đây thì bạn làm tiếp nhé!
Nhóm các hạng tử có chứa 𝑥 x và 𝑦 y: 2 𝑥 𝑦 + 14 𝑥 + 𝑦 = 33 2xy+14x+y=33 Nhóm các hạng tử có chứa 𝑥 x và 𝑦 y: 2 𝑥 ( 𝑦 + 7 ) + 𝑦 = 33 2x(y+7)+y=33 Biến đổi phương trình: 2 𝑥 ( 𝑦 + 7 ) + 𝑦 = 33 2x(y+7)+y=33 Thêm 7 vào cả hai vế: 2 𝑥 ( 𝑦 + 7 ) + ( 𝑦 + 7 ) = 40 2x(y+7)+(y+7)=40 Nhân vế trái: ( 𝑦 + 7 ) ( 2 𝑥 + 1 ) = 40 (y+7)(2x+1)=40 Tìm các cặp số nguyên 𝑥 x và 𝑦 y thỏa mãn: Ta xét các ước của 40: ± 1 , ± 2 , ± 4 , ± 5 , ± 8 , ± 10 , ± 20 , ± 40 ±1,±2,±4,±5,±8,±10,±20,±40. Vì 2 𝑥 + 1 2x+1 là số lẻ, nên 𝑦 + 7 y+7 phải là một trong các ước lẻ của 40: ± 1 , ± 5 ±1,±5. Từ đó, ta có các trường hợp sau: Trường hợp 1: 𝑦 + 7 = 1 y+7=1 và 2 𝑥 + 1 = 40 2x+1=40 Giải hệ: 𝑦 = − 6 , 𝑥 = 19 y=−6,x=19 Trường hợp 2: 𝑦 + 7 = − 1 y+7=−1 và 2 𝑥 + 1 = − 40 2x+1=−40 Giải hệ: 𝑦 = − 8 , 𝑥 = − 21 y=−8,x=−21 Trường hợp 3: 𝑦 + 7 = 5 y+7=5 và 2 𝑥 + 1 = 8 2x+1=8 Giải hệ: 𝑦 = − 2 , 𝑥 = 3 y=−2,x=3 Trường hợp 4: 𝑦 + 7 = − 5 y+7=−5 và 2 𝑥 + 1 = − 8 2x+1=−8 Giải hệ: 𝑦 = − 12 , 𝑥 = − 9 y=−12,x=−9 Kết luận: Các cặp số nguyên 𝑥 x và 𝑦 y thỏa mãn phương trình là: ( 𝑥 , 𝑦 ) = ( 19 , − 6 ) , ( − 21 , − 8 ) , ( 3 , − 2 ) , ( − 9 , − 12 ) (x,y)=(19,−6),(−21,−8),(3,−2),(−9,−12) Vậy, các nghiệm của phương trình là ( 𝑥 , 𝑦 ) = ( 19 , − 6 ) , ( − 21 , − 8 ) , ( 3 , − 2 ) , ( − 9 , − 12 ) (x,y)=(19,−6),(−21,−8),(3,−2),(−9,−12).