tìm x,y biết : 3*y^2 + x^2 + 2*x*y + 2*x + 6y +3 = 0. Làm đc khen giỏi thank trc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


câu 1:
f(-3) = 7
=> f(-3) = (a + 2) . (-3) + 2a + 5 = 7
=> -3a - 6 + 2a + 5 = 7
=> -1 - a = 7
=> -1 - 7 = a
=> a = -8

Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=2k\\z=4k\end{cases}}\)
Khi đó xz = 6y
<=> 3k.4k = 6.2k
= 12k2 = 12k
=> 12k2 - 12k = 0
=> 12k(k - 1) = 0
=> k(k - 1) = 0
=> \(\orbr{\begin{cases}k=0\\k=1\end{cases}}\)
Khi k = 0 => x = y = z = 0
Khi k = 1 => x = 3 ; y = 2 ; z = 4
Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=2k\\z=4k\end{cases}}\)
=> xz = 6y ⇔ 3k.4k = 6.2k
⇔ 12k2 - 12k = 0
⇔ 12k( k - 1 ) = 0
⇔ 12k = 0 hoặc k - 1 = 0
⇔ k = 0 hoặc k = 1
Với k = 0 => x = y = z = 0 ( loại )
Với k = 1 => x = 3 ; y = 2 ; z = 4 ( thỏa mãn )
Vậy x = 3 ; y = 2 ; z = 4

a)\(6y\left(y-1\right)=y-1\)
\(6y=\frac{y-1}{y-1}\)
\(6y=1\)
\(y=\frac{1}{6}\)
b) \(2\left(y+5\right)-y^2-5y=0\)
\(2y+10-y^2-5y=0\)
\(y\left(2-y-5\right)+10=0\)
\(y\left(-3-y\right)=-10\)
\(-3y-2y=-10\)
\(-5y=-10\)
\(y=2\)
c) \(y^3+y=0\)
\(y\left(y^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y^2=-1\left(vl\right)\end{cases}}}\)
hok tốt!!

Ta có:
\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)
nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)
Thay \(x=4;y=1\) vào \(P\), ta được:
\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)
\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)
\(=1-1=0\)
Vậy \(P=0\) khi \(x=4;y=1\).

a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2