Chúng minh có vô số các số tự nhiên n sao cho 2016n là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta chọn abc sao cho
a^2 b^2 +b^2 c^2=(c^2-ab)tất cả mũ 2
=> c = a + b
ta chọn c = a + b thì :
a^2 b^2+b^2 c^2+c^2 a^2=(b^2+a^2+ab)^2

Ta chọn a, b, c sao cho:
\(a^2b^2+b^2c^2+c^2a^2=\left(c^2-ab\right)^2\)
\(\Leftrightarrow c=a+b\)
Khi đó ta chọn: \(c=a+b\) thì:
\(a^2b^2+b^2c^2+c^2a^2=\left(b^2+a^2+ab\right)^2\)(đpcm)
Ta chọn abc sao cho
a^2 b^2 +b^2 c^2=(c^2-ab)tất cả mũ 2
c=a+b
ta chọn c=a+b thì
a^2 b^2+b^2 c^2+c^2 a^2=(b^2+a^2+ab)^2

(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x = 1\) không là số vô tỉ.
(2) “Bình phương của mọi số thực đều không âm” đúng;
(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;
(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.

đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP