Bộ GD&ĐT cấm dạy thêm: Giải pháp nào dành cho nhà trường và giáo viên?
🔥 Xem ngay Bộ đề kiểm tra giữa kỳ II năm học 2024 - 2025
Chinh phục Đấu trường thử thách OLM hoàn toàn mới, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tích :
( 1 + 7/9 ) . ( 1 + 7/20 ) . ( 1 + 7/33 ) ........ ( 1 + 7/2900 )
(1+7/9)x(1+7/20)x(1+7/33)x...x(1+7/2900)
=(8x2)/(9x1) x (9x3)/(10x2) x 10x4/(11x3) x ...x(57x51)/(58x50)
=(8x2x9x3x10x4x...x57x51)x(9x1x10x2x11x3x...x58x50)
Sau khi giản ước ta được:
(8x51)/(1x58)=204/29
mk ko chắc chắn lắm đâu
( 1 + 7/9 ) . ( 1 × 7/20 ) . ( 1 + 7/33 ) ... ( 1 + 7/2900 )
= 16/9 . 27/20 . 40/33 ... 2907/2900
= 2.8/1.9 . 3.9/2.10 . 4.10/3.11 ... 51.57/50.58
= 2.3.4...51/1.2.3...50 . 8.9.10...57/9.10.11...58
= 51 . 8/58
= 204/29
1-tính tích
p=(1+7/9)(1+7/20)(1+7/33)...(1+7/2900)
Kết quả là 2892
Tính: A=(1+7/9)*(1+7/20)*(1+7/33)*..........*(1+7/2900)
Tính nhanh :A = ( 1 + 7/9 ).(1+7/20).(1+7/33 )....( 1 + 7/2900 )
Tính P=(1+7/9).(1+7/20).(1+7/33)...(1+7/2900)
Tính và so sánh:
a. A= ( 1+7/9)(1+7/20)(1+7/33).............(1+7/2900) với 7
tính
a=(1+(7/9))x(1+(7/20))x(1+(7/33))x...........x(1+(1/2900))
(1+7/9)*(1+7/20)*(1+7/33)*...*(1 + 7/2900) = ?
tính tích P=[1+\(\frac{7}{9}\)].[1+\(\frac{7}{20}\)].[1+\(\frac{7}{33}\)]...[1+\(\frac{7}{2900}\)]
chứng minh rằng :(1+7/9)(1+7/20)(1+7/33).......(1+7/2900)=7 1/29
(1+7/9)x(1+7/20)x(1+7/33)x...x(1+7/2900)
=(8x2)/(9x1) x (9x3)/(10x2) x 10x4/(11x3) x ...x(57x51)/(58x50)
=(8x2x9x3x10x4x...x57x51)x(9x1x10x2x11x3x...x58x50)
Sau khi giản ước ta được:
(8x51)/(1x58)=204/29
mk ko chắc chắn lắm đâu
( 1 + 7/9 ) . ( 1 × 7/20 ) . ( 1 + 7/33 ) ... ( 1 + 7/2900 )
= 16/9 . 27/20 . 40/33 ... 2907/2900
= 2.8/1.9 . 3.9/2.10 . 4.10/3.11 ... 51.57/50.58
= 2.3.4...51/1.2.3...50 . 8.9.10...57/9.10.11...58
= 51 . 8/58
= 204/29