\(A=\frac{51}{136}+\frac{65}{154}\)
Giải chi tiết nhé!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{17}{2}-\left|2x-\frac{5}{2}\right|=-\frac{7}{6}\)
\(\left|2x-\frac{5}{2}\right|=\frac{17}{2}-\frac{-7}{6}\)
\(\left|2x-\frac{5}{2}\right|=\frac{51}{6}+\frac{7}{6}\)
\(\left|2x-\frac{5}{2}\right|=\frac{29}{3}\)
\(2x-\frac{5}{2}=\frac{29}{3}\)hoặc \(2x-\frac{5}{2}=\frac{-29}{3}\)
Trường hợp 1:
\(2x-\frac{5}{2}=\frac{29}{3}\)
\(2x=\frac{29}{3}+\frac{5}{2}\)
\(2x=\frac{73}{6}\)
\(x=\frac{73}{6}:2\)
\(x=\frac{73}{12}\)
Trường hợp 2:
\(2x-\frac{5}{2}=\frac{-29}{3}\)
\(2x=\frac{-29}{3}+\frac{5}{2}\)
\(2x=\frac{-43}{6}\)
\(x=\frac{-43}{6}:2\)
\(x=\frac{-43}{12}\)
Vậy \(x=\frac{73}{12}\)hoặc \(x=\frac{-43}{12}\)
\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-....+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Vậy \(A=\frac{255}{512}\)
=1/2-1/4+1/4-1/8+1/8-....+1/156-1/152
=1/2-1/152
=255/512
A=255/512
\(\frac{x-2015}{2}+\frac{x-2016}{3}=\frac{x-2017}{4}+\frac{x-2018}{5}\)
\(=\frac{x-2015}{2}+1+\frac{x-2016}{3}+1=\frac{x-2017}{4}+1+\frac{x-2018}{5}+1\)
\(\frac{x-2013}{2}+\frac{x-2013}{3}=\frac{x-2013}{4}+\frac{x-2013}{5}\)
\(\frac{x-2013}{2}+\frac{x-2013}{3}-\frac{x-2013}{4}-\frac{x-2013}{5}=0\)
\(\left(x-2013\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)=0\)
vì \(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\)nên \(x-2013=0\)
x = 2013
\(A=\frac{51}{136}+\frac{65}{154}=\frac{3}{8}+\frac{65}{154}=\frac{231}{616}+\frac{260}{616}=\frac{491}{616}\)