K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

a) S hình thoi là:

      (19 x 12) : 2 = 114(cm2)

b) S hình thoi là;

      (30 x 7) : 2 = 105(cm2)

4 tháng 6 2016

(ax+b).(x2+cx+1)=x3-3x+2

ax3+acx2+ax+bx2+cbx+b=x3-3x+2

ax3+(acx2+bx2)+(ax+cbx)+b=x3-3x+2

ax3+x2(ac+b)+x(a+cb)+b=x3+0x2-3x+2

Đồng nhất các hệ số 2 vế của đẳng thức,ta có:

\(\hept{\begin{cases}a=1,b=2\\ac+b=0\\a+cb=-3\end{cases}}\Rightarrow\hept{\begin{cases}a=1,b=2\\c=-2\end{cases}}\)

Vậy a=1,b=2,c=-2 thì thỏa mãn đẳng thức đã cho

P/s:cái ngoặc nhọn của OLM chỉ điền đc 3 ô thui nhưng trình bày vào vở thì trình bày cái ngoặc nhọn cho 4 dòng nhé :))

30 tháng 8 2019

bạn ghi lại đề đi mình chả hiểu cái mô tê gì cả

17 tháng 6 2016
a) ax^2 + bx + c = 0 Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. ∆ > 0 => b^2 - 4ac > 0 x1 + x2 = -b/a > 0 => b và a trái dấu x1.x2 = c/a > 0 => c và a cùng dấu Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 ∆ = b^2 - 4ac >0 x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 => phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. x1 + x2 ≥ 2√( x1.x2 ) x3 + x4 ≥ 2√( x3x4 ) => x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) Tiếp tục côsi cho 2 số không âm ta có √( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) Theo a ta có x1.x2 = c/a x3.x4 = a/c => ( x1.x2 )( x3.x4 ) = 1 => 2√[√( x1.x2 )( x3.x4 ) ] = 2 Từ (#) và (##) ta có x1 + x2 + x3 + x4 ≥ 4
19 tháng 12 2021

a: \(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

30 tháng 9 2021

\(A=6x^2+23x+21-\left(6x^2+23x-55\right)=76\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ C=x^4+x^3-3x^2-2x-\left(x^4+x^3-x^2-2x^2-2x+2\right)\\ =-2\)

3 tháng 1 2018

1 tháng 11 2021

a) \(\Rightarrow x\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)

7 tháng 11 2024

vậy giỏi zữ vậy

16 tháng 12 2018

Giải bài 20 trang 181 sgk Đại số 11 | Để học tốt Toán 11

a) f’(x) = 3x2 – x.

⇒ f’(-1) = 4; f(-1) = -3.

⇒ Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = -1 là:

y = 4.(x + 1) – 3 = 4x + 1.

b) f’(sin x) = 0

⇔ 3.sin2x – sin x = 0

⇔ sin x.(3sin x – 1) = 0

Giải bài 20 trang 181 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 20 trang 181 sgk Đại số 11 | Để học tốt Toán 11

11 tháng 9 2019

a) x = 1; x = - 1 3                 b) x = 2.

c) x = 3; x = -2.                 d) x = -3; x = 0; x = 2.

28 tháng 12 2017