cho tam giác abc vuông tại A. lấy điểm D nằm trên cạnh AC.
Chứng minh: AD< AC; BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác BDC có góc BDC+ góc C+ góc DBC=180 độ
mà góc CDB+ góc ACB=90 độ
suy ra góc DBC =90 độ
suy ra tam giác DBC vuông tại B có đường cao AB( vì tam giác ABC vuông tại A)
Áp dụng hệ thức lượng vào tam giác DBC ta có:
1/BC^2+1/BD^2=1/AB^2( ĐPCM)
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
Xét tam giác ACB và tam giác ADB :
+ AD=AC(gt)
+góc BAC=BAD =90 độ
+AB : cạnh chung
=>tam giác ACB =tam giác ADB ( cgc)
=> DB=BC ( hai cạnh tương ứng)
=> góc DBA= góc CBA( hai góc tương ứng)
=> BA là tia phân giác của góc DBC
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
Ta có: \(\hat{BAD}+\hat{CAD}=\hat{BAC}=90^0\)
\(\hat{BDA}+\hat{HAD}=90^0\) (ΔHAD vuông tại H)
mà \(\hat{BAD}=\hat{BDA}\) (ΔBAD cân tại B)
nên \(\hat{CAD}=\hat{HAD}\)
=>AD là phân giác của góc HAC
b: Xét ΔAHD và ΔAED có
AH=AE
\(\hat{HAD}=\hat{EAD}\)
AD chung
Do đó: ΔAHD=ΔAED
=>\(\hat{AHD}=\hat{AED}\)
=>\(\hat{AED}=90^0\)
=>ED⊥AC
mà HK⊥AC
nên HK//ED
=>HKED là hình thang
c: ΔAHD=ΔAED
=>DH=DE
=>D nằm trên đường trung trực của HE(1)
Ta có: AH=AE
=>A nằm trên đường trung trực của HE(2)
Từ (1),(2) suy ra AD là đường trung trực của HE
=>AD⊥HE
Xét ΔAEH có
HK,AD là các đường cao
HK cắt AD tại I
Do đó: I là trực tâm của ΔAEH
=>EI⊥AH tại F
mà HC⊥HA
nên EF//HC
=>EFHC là hình thang
Hình thang EFHC có EF⊥FH
nên EFHC là hình thang vuông
a Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
b: Ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
Suy ra: KB=KD
=544
:))