K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

a) áp dụng bđt Cauchy cho 2 số duong 2/x và x/2 được 

\(\frac{2}{x}+\frac{x}{2}>=2\sqrt{\frac{2x}{x.2}}=2\sqrt{1}=2\left(đpcm\right)\)

b) áp dụng bđt Cauchy cho 2 số duong 8/y và y/2 được 

\(\frac{8}{y}+\frac{y}{2}>=2\sqrt{\frac{8y}{y.2}}=2\sqrt{4}=4\left(đpcm\right)\)

25 tháng 5 2016

c) ta có 2/x+x/2>=2 (theo câu a)

<=> (4+x^2)/2x>=2

<=> x^2-4x+4>=0

<=> (x-2)^2>=0

<=> x-2>=0<=> x>=2

ta có 8/y+y/2>=4 (theo câu b)

<=> (16+y^2)/2y>=4

<=> y^2-8y+16>=0

<=> (y-4)^2>=0

<=> y-4>=0<=> y>=4

=> x+y>=6

=>(x+y)/2>=3 (chia 2 vế cho 2)

=> 1/2(x+y)>=3 (đpcm)

26 tháng 12 2016

\(A=\left(x-2+\frac{1}{x}\right)+2y-3=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+2y-3\ge-3\)

\(\left(1\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\) mọi x>0

\(\left(2\right)2y\ge0\) với mọi y>0

\(\left(3\right)-3\ge-3\) với x,y

(1)+(2)+(3)=> dpcm

Hiểu thì  làm tiếp

NV
2 tháng 10 2019

Đề bài sai bạn: ví dụ cho \(y=z=0\); \(x=4\) thì \(\frac{4}{6}\le\frac{1}{3}\) (vô lý)

26 tháng 1 2018

a.x(y+3)=3

=> x(y+3) ∈Ư(3)={-3;-1;1;3}

ta có bảng sau

x -3 -1 1 3
y+3 -1 -3 3 1
y -4 -6 0 -2

vậy x=-3 thì y=-4

x=-1 thì y=-6

x=1 thì y=0

x=3 thì y=-2

c.x+3⋮ x+1

=> (x+3)-(x+1)⋮(x+1)

=> (x+3-x-1)⋮(x+1)

=> 2⋮(x+1)

=> (x+1) ∈ Ư(2)={-2;-1;1;2}

=> x∈{-3;-2;0;1}

vậy x ∈{-3;-2;0;1}

b,d tương tự

26 tháng 1 2018

a.(x-2)(x+3)>0

=>\(\left[{}\begin{matrix}x-2>0\\x+3>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x>-3\end{matrix}\right.\)

=> x>2

vậy x>2

b.(x-2)(x-1)>0

=> \(\left[{}\begin{matrix}x-2>0\\x-1>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x>1\end{matrix}\right.\)

=> x>2

vậy x>2

c.(x-2)(x2+1)>0

=> \(\left[{}\begin{matrix}x-2>0\\x^2+1>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x^2>-1\Rightarrow x>\sqrt{-1}\end{matrix}\right.\)

vậy x>2

d.(x-1)(x+2)>0

=> \(\left[{}\begin{matrix}x-1>0\\x+2>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>1\\x>-2\end{matrix}\right.\)

=> x>1

vậy x>1

NV
16 tháng 5 2019

\(x^2+y^3+y^2\ge x^3+y^4+y^2\ge x^3+2y^3\Rightarrow x^2+y^2\ge x^3+y^3\)

Lại có \(\left(x^2+y^2\right)^2=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}\sqrt{y^3}\right)^2\le\left(x+y\right)\left(x^3+y^3\right)\)

\(\Rightarrow\left(x^2+y^2\right)^2\le\left(x+y\right)\left(x^2+y^2\right)\Rightarrow x^2+y^2\le x+y\)

\(\Rightarrow\left(x^2+y^2\right)^2\le\left(x+y\right)^2\le2\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\le2\Rightarrow x^3+y^3\le2\)

Dấu "=" xảy ra khi \(x=y=1\)