Chung to rang:1+1/2 mu2+1/3 mu2+1/4 mu2+....+1/100 mu2 be hon 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
đề yêu câu ftinhs hay tính nhanh Đoàn Đức Hiếu cho nhok cày GP nè
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(2x-1\right)\left(1+2x\right)-3\left(x-3\right)^2-\left(2+x\right)^2\)
\(=\left(2x-1\right)\left(2x+1\right)-3\left(x^2-6x+9\right)-\left(4+4x+x^2\right)\)
\(=4x^2-1-3x^2+18x-27-4-4x-x^2\)
\(=14x-32\)
Phần b ,c giải phương trình??
\(\left(2x-3\right)^2+\left(3-x\right)^2+2\left(3-x\right)\left(2x-3\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3+2\left(3-x\right)\right)+\left(3-x\right)^2=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3+6-2x\right)+\left(3-x\right)^2=5\)
\(\Leftrightarrow3\left(2x-3\right)+9-6x+x^2=5\)
\(\Leftrightarrow6x-9+9-6x+x^2=5\)
\(\Leftrightarrow x^2=5\)
\(\Leftrightarrow x=\pm\sqrt{5}\)
\(\left(x+5\right)\left(5-x\right)+\left(2x-1\right)^2-\left(3x-1\right)\left(x+2\right)-7=0\)
\(\Leftrightarrow\left(5-x\right)\left(5-x\right)+4x^2-4x+1-\left(3x^2+6x-x-2\right)-7=0\)
\(\Leftrightarrow25-x^2+4x^2-4x+1-3x^2-6x+x+2-7=0\)
\(\Leftrightarrow21-9x=0\)
\(\Leftrightarrow9x=21\)
\(\Leftrightarrow x=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + \(\dfrac{1}{7^2}\) +.................+ \(\dfrac{1}{2004^2}\)
A = \(\dfrac{1}{5.5}\) + \(\dfrac{1}{6.6}\) + \(\dfrac{1}{7.7}\)+..............+ \(\dfrac{1}{2004.2004}\)
Vì \(\dfrac{1}{5}>\dfrac{1}{6}>\dfrac{1}{7}>...........>\dfrac{1}{2004}\)
nên ta có : \(\dfrac{1}{5.5}>\dfrac{1}{5.6}>\dfrac{1}{6.6}>\dfrac{1}{6.7}>\dfrac{1}{7.7}>.....>\dfrac{1}{2004.2004}>\dfrac{1}{2004.2005}\)
\(\dfrac{1}{5.5}+\dfrac{1}{6.6}+\dfrac{1}{7.7}+...+\dfrac{1}{2004.2004}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+..+\dfrac{1}{2004.2005}\)
A > \(\dfrac{1}{5}\) \(-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+....+\dfrac{1}{2004}-\dfrac{1}{2005}\)
A > \(\dfrac{1}{5}\) - \(\dfrac{1}{2005}\) = \(\dfrac{1}{5}\) - \(\dfrac{12}{24060}\)
\(\dfrac{1}{65}\) = \(\dfrac{1}{5}\) - \(\dfrac{12}{65}\)
Vì \(\dfrac{12}{65}\) > \(\dfrac{12}{24060}\) nên A> \(\dfrac{1}{65}\) ( phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn)
Tương tự ta có :
A = \(\dfrac{1}{5.5}\) + \(\dfrac{1}{6.6}\)+ \(\dfrac{1}{7.7}\)+......+\(\dfrac{1}{2004.2004}\) >\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+.....\(\dfrac{1}{2003.2004}\)
A < \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) +......+ \(\dfrac{1}{2003}\) - \(\dfrac{1}{2004}\)
A < \(\dfrac{1}{4}-\dfrac{1}{2004}\) < \(\dfrac{1}{4}\)
\(\dfrac{1}{65}< \)A < \(\dfrac{1}{4}\) (đpcm)
đặt A=1+1/2 mu2+1/3 mu2+1/4 mu2+....+1/100 mu2
đặt B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
ủng hộ nhé