Hãy chứng minh : 43+16=100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(7^{2011}-43=7^{2008}.7^3-43\)
\(=\left(...01\right).\left(...43\right)-43\)
Vì số nào có 2 chữ số tận cùng là 01 khi nhân với 1 số khác tận cùng là 2 chữ số ab thì tích đó có tận cùng là ab nên ta lại có:
\(=\left(...43\right)-43\)
\(=\left(...00\right)\) Chia hết cho 100
Vậy 72011-43 chia hết cho 100
Ta cần chứng minh rằng:
\(6^{7260} \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp};\text{c}ả\&\text{nbsp}; 7 \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; 43.\)
Chứng minh \(6^{7260} \equiv 0 \left(\right. m o d 7 \left.\right)\) và \(6^{7260} \equiv 0 \left(\right. m o d 43 \left.\right)\) là sai → vì rõ ràng \(6 < 7\), \(6 < 43\), nên không thể chia hết.
Nhưng có vẻ bạn đang muốn chứng minh:
\(6^{7260} \equiv 1 \left(\right. m o d 7 \left.\right) \text{v} \overset{ˋ}{\text{a}} 6^{7260} \equiv 1 \left(\right. m o d 43 \left.\right)\)
hoặc:
\(6^{7260} \equiv 1 \left(\right. m o d 301 \left.\right)\)
Vì 7 và 43 là các số nguyên tố, và:
\(7 \times 43 = 301\)
\(6^{7260} \equiv 1 \left(\right. m o d 7 \left.\right) \text{v} \overset{ˋ}{\text{a}} 6^{7260} \equiv 1 \left(\right. m o d 43 \left.\right)\)
Sử dụng Định lý Fermat nhỏ:
Với \(p\) là số nguyên tố và \(a\) không chia hết cho \(p\), thì:
\(a^{p - 1} \equiv 1 \left(\right. m o d p \left.\right)\)
\(6^{6} \equiv 1 \left(\right. m o d 7 \left.\right)\)
→ Mà \(7260\) chia hết cho \(6\), vì:
\(7260 \div 6 = 1210\)
⇒
\(6^{7260} = \left(\right. 6^{6} \left.\right)^{1210} \equiv 1^{1210} \equiv 1 \left(\right. m o d 7 \left.\right)\)
Áp dụng định lý Fermat:
\(6^{42} \equiv 1 \left(\right. m o d 43 \left.\right)\)
Vì:
\(7260 \div 42 = 172.857... \Rightarrow t a k i ể m t r a 7260 c \overset{ˊ}{o} c h i a h \overset{ˊ}{\hat{e}} t c h o 42 k h \hat{o} n g ?\)\(7260 \div 42 = 172.857... \rightarrow k h \hat{o} n g c h i a h \overset{ˊ}{\hat{e}} t !\)
Nhưng ta có thể viết:
\(7260 = 42 \times 172 + 36\)
⇒
\(6^{7260} = \left(\right. 6^{42} \left.\right)^{172} \cdot 6^{36} \equiv 1^{172} \cdot 6^{36} \equiv 6^{36} \left(\right. m o d 43 \left.\right)\)
Ta cần kiểm tra \(6^{36} m o d \textrm{ } \textrm{ } 43\). Đây khá lớn, nên thay vì tính trực tiếp, ta dùng chu kỳ modulo.
Tìm số nhỏ nhất \(k\) sao cho:
\(6^{k} \equiv 1 \left(\right. m o d 43 \left.\right)\)
Tức là tìm bậc của 6 modulo 43.
Ta thử dần:
→ Vậy:
\(6^{3} \equiv 1 m o d \textrm{ } \textrm{ } 43 \Rightarrow \text{chu}\&\text{nbsp};\text{k} \overset{ˋ}{\text{y}} \&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; 6 m o d \textrm{ } \textrm{ } 43 = 3\)
Vì chu kỳ là 3, ta chia:
\(7260 \div 3 = 2420 \Rightarrow 6^{7260} = \left(\right. 6^{3} \left.\right)^{2420} \equiv 1^{2420} = 1 m o d \textrm{ } \textrm{ } 43\)
\(6^{7260} \equiv 1 m o d \textrm{ } \textrm{ } 7\)\(6^{7260} \equiv 1 m o d \textrm{ } \textrm{ } 43\)
⇒ Theo định lý Chinese Remainder Theorem, suy ra:
\(6^{7260} \equiv 1 m o d \textrm{ } \textrm{ } 301\)
6⁷²⁶⁰ chia cho cả 7 và 43 đều dư 1 ⇒ không chia hết, nhưng:
\(6^{7260} \equiv 1 m o d \textrm{ } \textrm{ } 7 \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; m o d \textrm{ } \textrm{ } 43\)
43.0=100.0=> 43=100
16.0=0.0 => 16=0
không chứng minh đk đâu@@@@ nếu muốn thì hỏi chúa ^-^