Giải phương trình n+S(n)=1982,với S(n) là tổng các chữ số của n (n là số nguyên không âm ).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta thấy \(87=1.87=3.29\) nên ta xét 2TH
TH1: \(\left\{{}\begin{matrix}S\left(n\right)=1\\S\left(n+1\right)=87\end{matrix}\right.\)
Vì \(S\left(n\right)=1\) nên \(n=100...00\), do đó \(n+1=100...01\) nên \(S\left(n+1\right)=2\), mâu thuẫn.
TH2: \(\left\{{}\begin{matrix}S\left(n\right)=87\\S\left(n+1\right)=1\end{matrix}\right.\)
Vì \(S\left(n+1\right)=1\) nên \(n+1=100...00\), do đó \(n=999...99\) chia hết cho 9, dẫn đến \(S\left(n\right)⋮9\), mâu thuẫn với \(S\left(n\right)=87\)
TH3: \(\left\{{}\begin{matrix}S\left(n\right)=3\\S\left(n+1\right)=29\end{matrix}\right.\)
Vì \(S\left(n\right)=3\) nên \(n⋮3\) \(\Rightarrow n+1\) chia 3 dư 1 \(\Rightarrow S\left(n+1\right)\) chia 3 dư 1. Thế nhưng 29 chia 3 dư 2, vô lý.
TH4: \(\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) . Ta lại xét các TH:
TH4.1: \(n+1=10...010...01\) hoặc \(200...01\) hoặc \(100...2\). Khi đó trong tất cả các TH thì ta đều có \(S\left(n\right)=2\), không thỏa mãn.
TH4.2: \(n+1=10...010...010...0\) hoặc \(200...0100...0\) hoặc \(100...020...0\) hoặc \(300...00\). Khi đó trong tất cả các TH thì ta đều có\(S\left(n\right)=2+9m\left(m\inℕ\right)\) với m là số chữ số 9 có trong n. Để chọn được số nhỏ nhất, ta chỉ việc lược bỏ tất cả các số 0 ở giữa và cho \(m=3\) để có \(S\left(n\right)=29\). Vậy, ta tìm được \(n=11999\) (thỏa mãn)
Vậy, số cần tìm là 11999.
S(n).S(n+1)=3.29=1.87S(n).S(n+1)=3.29=1.87
- Nếu S(n)=1⇒S(n)=1⇒ nn có dạng 100...0100...0 ⇒S(n+1)=2≠87⇒S(n+1)=2≠87 (loại)
⇒S(n).S(n+1)=3.29⇒S(n).S(n+1)=3.29
Gọi nn có dạng ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯a1a2...aka1a2...ak¯ với ai∈N;a1≠0ai∈N;a1≠0
- Nếu ak≠9⇒S(n+1)=S(n)+1⇒S(n)ak≠9⇒S(n+1)=S(n)+1⇒S(n) và S(n+1)S(n+1) luôn khác tính chẵn lẻ ⇒S(n).S(n+1)⇒S(n).S(n+1) là một số chẵn, mà 87 lẻ ⇒⇒ loại
⇒ak=9⇒ak=9 ⇒S(n)>S(n+1)⇒{S(n)=29S(n+1)=3⇒S(n)>S(n+1)⇒{S(n)=29S(n+1)=3 ⇒S(n)−S(n+1)=26⇒S(n)−S(n+1)=26
Giả sử tận cùng bằng xx số 9 ⇒n=¯¯¯¯¯¯¯¯¯¯¯¯¯¯A9...9⇒n=A9...9¯ với A có tận cùng khác 9
⇒n+1=¯¯¯¯¯¯¯¯¯¯¯¯¯¯B0...0⇒n+1=B0...0¯ (x số 0 và B=A+1B=A+1)
⇒{S(n)=S(A)+9.xS(n+1)=S(B)=S(A+1)=S(A)+1⇒{S(n)=S(A)+9.xS(n+1)=S(B)=S(A+1)=S(A)+1
⇒S(n)−S(n+1)=9x−1=26⇒9x=27⇒x=3⇒S(n)−S(n+1)=9x−1=26⇒9x=27⇒x=3
Vậy n=¯¯¯¯¯¯¯¯¯¯¯¯A999⇒S(n)=S(A)+27=29⇒S(A)=2n=A999¯⇒S(n)=S(A)+27=29⇒S(A)=2
Mà nn nhỏ nhất khi AA nhỏ nhất, ta có số nhỏ nhất có tổng các chữ số bằng 2 là 2 ⇒A=2⇒A=2
⇒n=2999

1:
uses crt;
var n,i,t:integer;
begin
clrscr;
readln(n);
t:=0;
for i:=1 to n do
t:=t+i*i;
write(t);
readln;
end.
2
program bt2;
var i,n,t:integer;
begin
readln(n);
s:=0;
for i:=1 to n do
if i mod 2 = 1 then s:=s+i;
readln;
end.

\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)
\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))
* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))
Vậy không tồn tại số nguyên dương n thỏa mãn đề bài

lời giải đã ra :
tổng số n là
coi 6 như 6 * 10=60
vậy suy ra là 60
Ta có n+S(n)=1982
\(\Rightarrow n<1982\)
\(S_{\left(n\right)}\le1+9.3=28\)
\(\Rightarrow n\ge1982-28=1954\)
Sau đó bạn hạn chế đc số n thì thử chon là xong. mk còn cách khác bạn thử xem sao nhé
Gọi số cần tìm là abcd
Ta có
\(abcd+a+b+c+d=1001a+101b+11c+2d=1982\)
nên \(1\le a\le\frac{1982}{1001}\) \(\Rightarrow a=1\) \(\Rightarrow101b+11c+d=982\)
\(\Rightarrow\frac{986}{101}\ge b\ge\frac{855}{101}\) \(\Rightarrow b=9\)
Tương tự ta sẽ tìm đc \(c=6;d=3\)
Vậy số cần tìm là 1963