\(\frac{7}{12}-\frac{2}{7}+\frac{1}{12}\)
\(\frac{12}{17}-\frac{5}{17}-\frac{4}{17}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cac ban giup mik voi, mik k cho! ( 10 k cho 3 nguoi dau tien tra loi cau hoi cua mik)
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)
\(=\frac{1454}{323}+\frac{35}{43}+6\)
\(=5,...+6\)
\(=11,...\)
\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)
\(=\sqrt{3}-2\)
\(VayA=\sqrt{3}-2\)
b) \(\frac{12}{19}.\frac{7}{15}.\frac{-13}{17}.\frac{19}{12}.\frac{17}{13}=\frac{12}{19}.\frac{19}{12}.\frac{-13}{17}.\frac{17}{13}.\frac{7}{15}=1.\left(-1\right).\frac{7}{15}=\frac{-7}{15}\)
\(-\frac{5}{7}.\frac{2}{11}+-\frac{5}{7}.\frac{9}{14}+\frac{12}{7}=-\frac{5}{7}.\left(\frac{2}{11}+\frac{9}{14}\right)+\frac{12}{7}=-\frac{5}{7}.\frac{127}{154}+\frac{12}{7}=-\frac{635}{1078}+\frac{12}{7}=\frac{1213}{1078}\)
\(\frac{12}{19}.\frac{7}{15}.-\frac{13}{17}.\frac{19}{12}.\frac{17}{13}=\left(\frac{12}{19}.\frac{19}{12}\right).\left(-\frac{13}{17}.\frac{17}{13}\right).\frac{7}{15}=1.-1.\frac{7}{15}=-\frac{7}{15}\)
Bài 1:
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + (\(\frac45\) - \(\frac{3}{17}\) + \(\frac13\)) - \(\frac17\) + (- \(\frac{14}{30}\))
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + \(\frac45\) - \(\frac{3}{17}\) + \(\frac13\) - \(\frac17\) - \(\frac{14}{30}\)
A = (\(\frac15\) + \(\frac45\)) + (\(\frac{3}{17}\) - \(\frac{3}{17}\)) - (\(\frac43-\frac13\)) - \(\frac{30}{210}\) - \(\frac{98}{210}\)
A = 1 + 0 - 1 - (\(\frac{30}{210}+\frac{98}{210}\))
A = 1 - 1 - \(\frac{228}{210}\)
A = 0 - \(\frac{128}{210}\)
A = - \(\frac{64}{105}\)
Bài 2:
B= (\(\frac58\) - \(\frac{4}{12}\) + \(\frac32\)) - (\(\frac58\) + \(\frac{9}{13}\)) - (\(\frac{-3}{2}\)) + \(\frac{7}{-15}\)
B = \(\frac58\) - \(\frac{4}{12}\) + \(\frac32\) - \(\frac58\) - \(\frac{9}{13}\) + \(\frac32\) - \(\frac{7}{15}\)
B = (\(\frac58\) - \(\frac58\)) + (\(\frac32\) + \(\frac32\)) - (\(\frac13\) + \(\frac{9}{13}\) + \(\frac{7}{15}\))
B = 0 + 3 - (\(\frac{65}{195}\) + \(\frac{135}{195}\) + \(\frac{91}{195}\))
B = 3 - (\(\frac{200}{195}\) + \(\frac{91}{195}\))
B = 3 - \(\frac{97}{65}\)
B = \(\frac{195}{65}\) - \(\frac{97}{65}\)
B = \(\frac{98}{65}\)
a) $\frac{2}{3} - \frac{1}{3} = \frac{{2 - 1}}{3} = \frac{1}{3}$
b) $\frac{7}{{12}} - \frac{5}{{12}} = \frac{{7 - 5}}{{12}} = \frac{2}{{12}} = \frac{1}{6}$
c) $\frac{{17}}{{21}} - \frac{{10}}{{21}} = \frac{{17 - 10}}{{21}} = \frac{7}{{21}} = \frac{1}{3}$
A = \(\frac{\frac{\frac{5+3.3-1.12}{12}}{3.6-5+2.2}+}{6}+\frac{16\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)}{17\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)}=\frac{\frac{\frac{5+9-12}{12}}{18-5+4}}{6}+\frac{16}{17}=\frac{2}{12}.\frac{6}{17}+\frac{16}{17}=\frac{1}{17}.\frac{6}{17}=1\)
A=\(\frac{\frac{5}{12}+\frac{9}{12}-\frac{12}{12}}{\frac{18}{6}-\frac{5}{6}+\frac{4}{6}}+\frac{16.\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)}{17.\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)}\)
=\(\frac{\frac{1}{6}}{\frac{17}{6}}+\frac{16}{17}\)
=\(\frac{1}{17}+\frac{16}{17}\)
=1
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
ta có;
b=8/3.2/5.3/8.10.19/92
b=16/15.3/8.10.19/92
b=2/5.10.19/92
b=4.19/92
b=19/23
c=-5/7.2/7+-5/7 . 9/14+1/5/7
c=-10/49+(-45)/98+1/5/5
c=131/98
7/12-2/7+1/12=7/12+1/12-2/7=8/12-2/7=2/3+2/7=14/21+6/21=20/21
12/17-5/17-4/17=3/17