Ai giúp mình với
M= 8^10+4^10
8^4+4^11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(A=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}\)
\(A=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(A=\frac{4^{15}+4^{10}}{4^3+4^{11}}\)
\(A=\frac{4^{10}\left(4^5+1\right)}{4^6\left(4^5+1\right)}\)
\(A=\frac{4^{10}}{4^6}=4^4=256\)
\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}\)
\(=2^8=256\)
Mình không phải CTV nhưng có thể giúp bạn :)
Đừng dựa dẫm nhiều vào CTV nha bạn!
\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(=\frac{2^{20}×2^{10}+2^{20}}{2^{12}+2^{12}×2^{10}}\)
\(=\frac{2^{20}×\left(2^{10}+1\right)}{2^{12}×\left(1+2^{10}\right)}\)
\(=\frac{2^{20}}{2^{12}}=2^8\)
Cbht
\(A=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^4}=\frac{2^{30}+2^{20}}{2^{12}+2^8}=\frac{2^{20}\left(2^{10}+1\right)}{2^8\left(2^4+1\right)}=\frac{2^{12}\left(2^{10}+1\right)}{2^4+1}\)
\(A=1+2+2^2+2^3+...+2^{2020}\)
\(2A=2+2^2+2^3+2^4+...+2^{2021}\)
\(2A-A=\left(2+2^2+2^3+2^4+....+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-1\)
x=(1+2+3-4-5-6)+...+(97+98+99-100-101-102)
x=-9+...+-9
x=-9.17
x=-153
a) = 1/10 - 1/11 + 1/11 -1/12 + 1/12 - 1/13 +1/13 1/14 +...+ 1/78 - 1/79
= 1/10 - 1/79
= máy tính ok
mấy câu khác bn làm tương tự là đc nhưng nhớ nhanh thêm khoảng cách giữa các mẫu nha
a)\(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{78.79}=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{78}-\frac{1}{79}=\frac{1}{10}-\frac{1}{79}=\frac{69}{790}\)
b) \(\frac{8}{7.9}+\frac{8}{9.11}+...+\frac{8}{133.135}=4\left(\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{133.135}\right)\)
\(=4\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{133}-\frac{1}{135}\right)=4\left(\frac{1}{7}-\frac{1}{135}\right)=4.\frac{128}{945}=\frac{456}{945}\)
c) \(\frac{12}{8.11}+\frac{12}{11.14}+...+\frac{12}{503.506}=4\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{503.506}\right)\)
\(=4\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{503}-\frac{1}{506}\right)=4\left(\frac{1}{8}-\frac{1}{506}\right)=\frac{249}{506}\)
d) \(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{391.394}=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{391.394}\right)\)
\(=\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{391}-\frac{1}{394}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{394}\right)=\frac{1}{3}.\frac{195}{788}=\frac{65}{788}\)
e) \(\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{602.605}=\frac{4}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{602.605}\right)\)
\(=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\right)=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{605}\right)=\frac{4}{3}.\frac{24}{121}=\frac{32}{121}\)
g) Sửa đề\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{820}=2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1640}\right)=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{40.41}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{40}-\frac{1}{41}\right)=2\left(1-\frac{1}{41}\right)=2.\frac{40}{41}=\frac{80}{41}\)
8^10+4^10/8^4+4^11=(2.4)^10+4^10/(2.4)^4+4^11
=2^10.4^10+4^10/2^4.4^4+4^11=4^10.(2^10+1)/(2^2)^4.4^4+4^11
=4^10.(2^10+1)/4^12+4^11
=4^10.(2^10+1)/4^11.(4+1)=2^10+1/4.5=1025/20=205/4