khi nhân một số với 5 thì tổng các chữ số của nó tăng lên 10 lần .CMR số này chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi số đã cho là a. Vậy số 5a và số a có cùng tổng các cs.
\(\Rightarrow\)5a và a có cùng 1 số dư khi chia cho 9.
\(\Rightarrow\)( 5a - a ) \(⋮\)9
\(\Rightarrow\)4a \(⋮\)9.
Mà 4 và 9 là 2 số nguyên tố cùng nhau. \(\Rightarrow\)Số bài cho \(⋮\)9 ( đpcm )
Gọi số cần tim là a
Theo bài ra ta có; a và 5a chia cho 9 sẽ có cùng số dư vì tổng các chữ số của a và 5a bằng nhau
suy ra: 5a-a chia hết cho 9 hay 4a chia hết cho 9
Mà(4;9)=1 suy ra a chia hết cho 9(dpcm)

Vì n có 5 chữ số nên n có dạng abcdef ( a;b;c;d;e;f là các số có 1 chữ số )
Ta có abcdef - (a + b + c + d + e + f)
= ( 100000a + 10000b + 1000c + 100a + e + f ) - (a + b + c + d + e + f)
= ( 100000a - a ) + ( 10000b - b ) + ( 1000c - c ) + ( e - e ) + ( f - f )
= 99999a +9999b + 999c
= 9( 11111a + 1111b + 111c ) chia hết cho 9
Vậy n chia hết cho 9 ( đpcm )
Nhận xét
Một số chia 9 dư bao nhiêu thì tổng các chữ số của nó cũng dư bấy nhiêu.
Giải
Ta có:
n và tổng các chữ số của n có cùng số dư khi chia cho 9
nên hiệu của chúng chia hết cho 9(đpcm)

vì a và 5a có tổng các chữ số bằng nhau nên a và 5a có cùng số dư khi chia hết cho 9
=>5a-a chia hết cho 9
=>4a chia hết cho 9
=>a chia hết cho 9 do(4,9)=1

Lời giải:
Gọi số tư nhiên đó là $A$ và tổng chữ số của nó là $S(A)$
Vì một số có cùng số dư khi chia cho 9 với tổng chữ số của nó nên:
$A-S(A)\vdots 9$
$9A-S(9A)\vdots 9$
$\Rightarrow 9A-S(9A)-[A-S(A)]\vdots 9$
$\Rightarrow 8A-[S(9A)-S(A)]\vdots 9$
$\Rightarrow 8A\vdots 9\Rightarrow A\vdots 9$
b.
Các số có 2 chữ số thỏa mãn là: $18,27, 36, 45, 54, 63, 72, 81, 99$