giá trị lớn nhất của biểu thức A=\(\frac{6}{x^2+3}\)là bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


P có giá trị số lớn nhất khi (x - 6 ) có giá trị bé nhất.
Giá trị bé nhất của (x - 6 ) là: x - 6 = 1
x = 1 + 6
x = 7
Khi đó giá trị số của biểu thức P là:
P = 2004 + 540 : ( 7 - 6 )
= 2004 + 540
= 2544

Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm

Giải:
P có giá trị số lớn nhất khi (x - 6) có giá trị bé nhất.
Gía trị bé nhất của (x - 6) là : x - 6 = 1
x = 1 + 6
x = 7
Khi đó giá trị số của biểu thức P là :
P = 2004 + 540 : (7 - 6)
= 2004 + 540
= 2544

\(P=2004+\frac{540}{x-6}\)
Để P có giá trị lớn nhất thì \(\frac{540}{x-6}\) lớn nhất
=>x-6=1
=>x=7
ta có x2 > = 0
=>GTLN của A=\(\frac{6}{3}=2\)