Chứng minh mọi số nguyên tố dạng 4k+1 đều là cạnh huyền của mọi tam giác (Fermat)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mỗi số tự nhiên n khi chia cho 4 có thể có 1 trong các số dư: 0; 1; 2; 3. Do đó mọi số tự nhiên n đều có thể viết được dưới 1 trong 4 dạng: 4k, 4k + 1, 4k + 2, 4k + 3
Với k N*.
- Nếu n = 4k thi n là hợp số.
- Nếu n = 4k + 2 thi n là hợp số.
Vậy mọi số nguyên tố lớn hơn 2 đều có dạng 4k + 1 hoặc 4k +3. Hay mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n +3 với n N*.
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Khi chia một số tự nhiên A lớn hơn 2 cho 4 thì ta được các số dư 0, 1, 2, 3 . Trường hợp số dư là 0 và 2 hai thì A là hợp số, ta không xột chỉ xột trường hợp số dư là 1 hoặc 3
Với mọi trường hợp số dư là 1 ta có A = 4 n ± 1
Với trường hợp số dư là 3 ta có A = 6 n ± 1
Ta có thể viết A = 4m + 4 – 1
= 4(m + 1) – 1
Đặt m + 1 = n, ta có A = 4n – 1
2. Khi chia số tự nhiên A cho 6 ta có các số dư 0, 1, 2, 3, 4, 5. Trường hợp số dư 0, 2, 3, 4. Ta có A chia hết cho 2 hoặc A chia hết cho 3 nên A là hợp số
Trường hợp dư 1 thì A = 6n + 1
Trường hợp dư 5 thì A = 6m + 5
= 6m + 6 – 1
6(m + 1 ) – 1
Đặt m + 1 = n Ta có A = 6n – 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a, số nguyên tố > 2 nên số đó ko chia hết cho 2
=> số đó lẻ
=> số đó có dạng 4n+-1
b, số nguyên tố > 3 nên số nguyên tố đó lẻ và ko chia hết co 3
=> số đó ko thể có dạng 6k ; 6k+-2 ; 6k+3
=> số đó có dạng 6k+-1
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Mỗi số tự nhiên n khi chia cho 4 có thể có 1 trong các số dư: 0; 1; 2; 3. Do đó mọi số tự nhiên n đều có thể viết được dưới 1 trong 4 dạng: 4k, 4k + 1, 4k + 2, 4k + 3
Với k N*.
- Nếu n = 4k thi n là hợp số.
- Nếu n = 4k + 2 thi n là hợp số.
Vậy mọi số nguyên tố lớn hơn 2 đều có dạng 4k + 1 hoặc 4k +3. Hay mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n +3 với n N*.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gỉa sử a là số nguyên nào đó mà a^2+1 có ước nguyên tố p có dạng 4k+3
=> a^2+1 chia hết cho p => a^4k+2 +1 chia hết cho p (1)
mặt khác theo định lý nhỏ của Fermat ta có a^p-1 -1 chia hết cho p hay a^ak+2 -1 chia hết cho p (2) Từ (1),(2) => 2 chia hết cho p mà số nguyên tố chia hết cho 2 là 2=> p=2. Mâu thuẫn với giả thiết p có dạng 4k+3
=> với mọi số nguyên a thuộc Z không có ướ nguyên tố dạng 4k+3