Tổng của 3 phân số là \(\frac{213}{70}\). Biết tử của 3 phân số tỉ lệ với 3;4;5 và mẫu ba phân số tỉ lệ với 5;1;2. Ba phân số đó là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi tử của ba phân số tối giản là a,b,c
mẫu của ba phân số tối giản là ,d,e,f
Ta có : Tử của ba phân số tối giản tỉ lệ với 3,4,5
=> \dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}3a=4b=5c
mà tổng của chúng là -2 => a+b+c =-2
Áp dụng t/c của dãy tỉ só bằng nhau ,có ;
\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}3a=4b=5c =\dfrac{a+b+c}{3+4+5}=-\dfrac{2}{12}=-\dfrac{1}{6}=3+4+5a+b+c=−122=−61
\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=-\dfrac{1}{6}\Rightarrow a=-\dfrac{1}{2}\\\dfrac{b}{4}=\dfrac{-1}{6}\Rightarrow b=-\dfrac{2}{3}\\\dfrac{c}{5}=-\dfrac{1}{6}\Rightarrow c=-\dfrac{5}{6}\end{matrix}\right.⇒⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧3a=−61⇒a=−214b=6−1⇒b=−325c=−61⇒c=−65
Tương tự ta tìm được mẫu của ba phân số tối giản lần lượt là d = -\dfrac{12}{13};e=-\dfrac{8}{13};f=-\dfrac{6}{13}−1312;e=−138;f=−136
Vậy ba phân số tối giản là \dfrac{a}{d}=da= \dfrac{6}{13};\dfrac{b}{e}=\dfrac{16}{39};\dfrac{c}{f}=\dfrac{5}{13}136;eb=3916;fc=135
![](https://rs.olm.vn/images/avt/0.png?1311)
Tổng của 3 phân số tối giản là $1\frac{17}{20}$11720 . Tử số của phân số thứ nhất, thứ hai, thứ 3 tỉ lệ với 3; 7; 11 và mẫu của 3 phân số theo thứ tự tỉ lệ với 10; 20; 40. Tìm 3 phân số đó
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
P/S1:9/35
P/S2:12/7
P/S3:15/14
mik cũng chỉ giải ra đáp án thôi mik cũng ko biết cách giải