Tìm các số nguyên x,y thỏa mãn 5x^2 - 32y = 103
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do 103 là số nguyên tố nên không chia hết cho 2
Mà 32y chia hết cho 2 nên \(5x^2⋮̸2\)
Mà 5 lẻ nên \(x^2\) lẻ
Do đó \(x^2\equiv1\left(mod4\right)\)
Lại có \(32y\equiv0\left(mod4\right)\Leftrightarrow5x^2-32y\equiv1\left(mod4\right)\)
Mà \(103\equiv3\left(mod4\right)\)
Vậy PT vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(xy^2+2xy+x=32y\)
\(x\left(y+1\right)^2=32y\)
\(\Rightarrow x=\frac{32y}{\left(y+1\right)^2}\)
Vì \(\left(y,\left(y+1\right)^2\right)=1\)và \(x\inℤ\)\(\Rightarrow\left(y+1\right)^2\inƯ\left(32\right)=Ư\left(2^5\right)=\left\{2^2;2^4\right\}\)
\(Khi\left(y+1\right)^2=2^2=4\Rightarrow\orbr{\begin{cases}y+1=2\\y+1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-3\end{cases}}\)
\(\cdot y=1\Rightarrow x=\frac{32.1}{4}=8\)
\(\cdot y=-3\Rightarrow x=\frac{32.\left(-3\right)}{4}=-24\)
\(Khi\left(y+1\right)^2=2^4=16\Rightarrow\orbr{\begin{cases}y+1=4\\y+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=3\\y=-5\end{cases}}}\)
\(\cdot y=3\Rightarrow x=\frac{32.3}{16}=6\)
\(\cdot y=-5\Rightarrow x=\frac{32.\left(-5\right)}{16}=-10\)
Vậy nghiệm phương trình \(\left(x;y\right)=\left(8;1\right);\left(-24;-3\right);\left(6;3\right);\left(-10;-5\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)
\(\Leftrightarrow x=\frac{32y}{y^2+2y+1}\)
\(\Leftrightarrow\frac{32y}{\left(y+1\right)^2}\)
\(\Leftrightarrow x=\frac{32y}{y+1}-\frac{32y}{\left(y+1\right)^2}\)
Để x là số nguyên dương thì
\(\left(y+1\right)^2\inƯ_{\left(32\right)}\)và\(\left(y+1\right)^2\)là số chính phương
\(\Rightarrow\left(y+1^2\right)=\left\{1;4;16\right\}\)
\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)
\(\Leftrightarrow y=\left\{0;1;3\right\}\)
Vì y là số nguyên dương
Nên: \(\hept{\begin{cases}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{cases}}\)
Vậy x = 8; y = 1
hoặc x = 6; y = 3
# Chúc bạn học tốt #
Bạn có thể giải thích rõ dòng: 4 và 5 không. Mình thấy nó chưa được chính xác.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(y\left(x+3\right)-5x-15=2\\ \Rightarrow y\left(x+3\right)-\left(5x+15\right)=2\\ \Rightarrow y\left(x+3\right)-5\left(x+3\right)=2\\ \Rightarrow\left(y-5\right)\left(x+3\right)=2\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}y-5,x+3\in Z\\y-5,x+3\inƯ\left(2\right)\end{matrix}\right.\)
Ta có bảng:
x+3 | 1 | 2 | -1 | -2 |
y-5 | 2 | 1 | -2 | -1 |
x | -2 | -1 | -4 | -5 |
y | 7 | 6 | 3 | 4 |
Vậy \(\left(x,y\right)\in\left\{\left(-2;7\right);\left(-1;6\right);\left(-4;3\right);\left(-5;4\right)\right\}\)
=>y.(x+3)-5(x+3)=2
=>(y-5).(x+3)=2
x+3 | 1 | -1 | 2 | -2 |
y-5 | 1 | -1 | 2 | -2 |
x | -2 | -1 | -4 | -5 |
y | 7 | 6 | 3 | 4 |
![](https://rs.olm.vn/images/avt/0.png?1311)
PT⇔x2−2xy+y2=35xy−5x2y2−60
⇔(�−�)2=5(3−��)(��−4)⇔(x−y)2=5(3−xy)(xy−4)
Mà (�−�)2≥0∀�;�(x−y)2≥0∀x;y nên 5(3−��)(��−4)≥0⇔3≤��≤45(3−xy)(xy−4)≥0⇔3≤xy≤4
⇒\hept{�;�∈{3;4}�=�⇒\hept{x;y∈{3;4}x=y ⇒(�;�)∈{(2;2);(−2;−2)}⇒(x;y)∈{(2;2);(−2;−2)}
ko có