Cho 6 số nguyên dương: a1 < a2 < a3 < a4 < a5 < a6. Chứng minh a1+a3+a5/ a1+a2+ 3+a4+a5+a6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(10< a_1< a_2< a_3< a_4< a_5< a_6< a_7< 100\)
Nếu bất kì ba đoạn thẳng nào cũng không thể lập thành một tam giác thì :
\(a_3\ge a_1+a_2\ge10+10=20\)
\(a_4\ge a_2+a_3\ge10+20=30\)
\(a_5\ge a_3+a_4\ge20+30=50\)
\(a_6\ge a_4+a_5\ge30+50=80\)
\(a_7\ge a_5+a_6\ge50+80=130\)(vô lí)
Vậy tồn tại một cặp gồm 3 đoạn thẳng có thể tạo thành một tam giác.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(f\left(x\right)=\left(x-a_1\right)\left(x-a_3\right)\left(x-a_5\right)+\left(x-a_2\right)\left(x-a_4\right)\left(x-a_6\right)\)
\(f\left(a_1\right)=\left(a_1-a_2\right)\left(a_1-a_4\right)\left(a_1-a_6\right)< 0\)
\(f\left(a_2\right)=\left(a_2-a_1\right)\left(a_2-a_3\right)\left(a_2-a_5\right)>0\)
\(f\left(a_4\right)=\left(a_4-a_1\right)\left(a_4-a_3\right)\left(a_4-a_5\right)< 0\)
\(f\left(a_6\right)=\left(a_6-a_1\right)\left(a_6-a_3\right)\left(a_6-a_5\right)>0\)
\(\Rightarrow f\left(x\right)\) có nghiệm thuộc các khoảng \(\left(a_1,a_2\right);\left(a_2,a_4\right);\left(a_4,a_6\right)\)
mà bậc cao nhất của f(x) là 3 nên f(x) có tối đa 3 nghiệm
=> dpcm
mình mới học lớp 6