🤔🤔 giải phương trình sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)
\(\Leftrightarrow6-8x-10+2x-5=0\)
\(\Leftrightarrow-6x+11=0\)
\(\Leftrightarrow-6x=-11\)
hay \(x=\dfrac{11}{6}\)
b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)
\(\Leftrightarrow6-12x-11+3x-1=0\)
\(\Leftrightarrow-9x-6=0\)
\(\Leftrightarrow-9x=6\)
hay \(x=-\dfrac{2}{3}\)

\(b,ĐK:-\dfrac{1}{3}\le x\le2\\ PT\Leftrightarrow3x+1=4x^2-16x+16\\ \Leftrightarrow4x^2-19x+15=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\\ d,\Leftrightarrow\left\{{}\begin{matrix}x=5-3y\left(1\right)\\\left(5-3y\right)^2+2y^2=25\left(2\right)\end{matrix}\right.\\ \left(2\right)\Leftrightarrow11y^2-30y=0\\ \Leftrightarrow y\left(11y-30\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\Rightarrow x=5-3\cdot0=5\\y=\dfrac{30}{11}\Rightarrow y=5-3\cdot\dfrac{30}{11}=-\dfrac{35}{11}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(5;0\right);\left(-\dfrac{35}{11};\dfrac{30}{11}\right)\right\}\)

a: Khi m=2 thì pt sẽ là x^2-6x-3=0
=>\(x=3\pm2\sqrt{3}\)

Thay x = 3, y = 5 vào vế trái của phương trình (3) ta được:
VT = 5.3 – 2.5 = 15 – 10 = 5 = VP
Vậy (x; y) = (3; 5) là nghiệm của phương trình (3).
Hệ phương trình đã cho có nghiệm (x; ) = (3; 5)
2)\(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
⇔\(\dfrac{x+5}{3\left(x-2\right)}-\dfrac{1}{2}=\dfrac{2x-3}{2\left(x-2\right)}\)
⇔\(\dfrac{2\left(x+5\right)}{3.2\left(x-2\right)}-\dfrac{3\left(x-2\right)}{2.3\left(x-2\right)}=\dfrac{3\left(2x-3\right)}{2.3\left(x-2\right)}\)
⇔\(\dfrac{2x+10}{6\left(x-2\right)}-\dfrac{3x-6}{6\left(x-2\right)}=\dfrac{6x-9}{6\left(x-2\right)}\)
⇔\(2x+10-\left(3x-6\right)=6x-9\)
⇔\(2x+10-3x+6-6x+9=0\)
⇔\(-7x+25=0\)
⇔\(-7x=-25\)
⇔\(x=\dfrac{25}{7}\)
3)\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
⇔\(\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x}{x^2+x+1}\)
⇔\(\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇔\(x^2+x+1-3x^2=2x^2-2x\)
⇔\(x^2+x+1-3x^2-2x^2+2x=0\)
⇔\(-4x^2+3x+1=0\)
⇔\(-\left(4x^2-3x-1\right)=0\)
⇔\(-\left(4x^2-4x+x-1\right)=0\)
⇔\(-\left[\left(4x^2-4x\right)+\left(x-1\right)\right]=0\)
⇔\(-\left[4x\left(x-1\right)+\left(x-1\right)\right]=0\)
⇔\(-\left[\left(x-1\right)\left(4x+1\right)\right]=0\)
⇔\(-\left(x-1\right)=0\) hay \(-\left(4x+1\right)=0\)
⇔\(-x+1=0\) hay \(-4x-1=0\)
⇔\(-x=-1\) hay \(-4x=1\)
⇔\(x=1\) hay \(x=-\dfrac{1}{4}\)