Tìm 2 số tự nhiên có tổng =432 và có ước chung lớn nhất =36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Gọi hai số cần tìm là a,b(a,b thuộc N)
Theo bài ra, ta có:
a+b=132
a chia hết cho 36. Suy ra a=36k
b chia hết cho 36. Suy ra b=36m mà ước chung lớn nhất của k và m là 1.
Thay a=36k, b=36m và a+b=432, ta được
36k+36m=432
36(k+m)=432
k+m=432:36
k+m=12
Suy ra cặp số (k;m) thỏa mãn(1;11);(5;7)
+) Với k=1,m=11; ta có:
a=36k. Suy ra a=36( thỏa mãn)
b=36m. Suy ra b=36.11 Suy ra b=396( thỏa mãn)
+) Với k=5;m=7, ta có:
a=36k Suy ra a=36.5 Suy ra a=180( thỏa mãn)
b=36m Suy ra b=36.7=252( thỏa mãn)
Vậy cặp số (a;b) tự nhiên thỏa mãn là (36;396);(180;252)
Gọi hai số cần tìm là a,b(a,b thuộc N)
Theo bài ra, ta có:
a+b=132
a chia hết cho 36. Suy ra a=36k
b chia hết cho 36. Suy ra b=36m mà ước chung lớn nhất của k và m là 1.
Thay a=36k, b=36m và a+b=432, ta được
36k+36m=432
36(k+m)=432
k+m=432:36
k+m=12
Suy ra cặp số (k;m) thỏa mãn(1;11);(5;7)
+) Với k=1,m=11; ta có:
a=36k. Suy ra a=36( thỏa mãn)
b=36m. Suy ra b=36.11 Suy ra b=396( thỏa mãn)
+) Với k=5;m=7, ta có:
a=36k Suy ra a=36.5 Suy ra a=180( thỏa mãn)
b=36m Suy ra b=36.7=252( thỏa mãn)
Vậy cặp số (a;b) tự nhiên thỏa mãn là (36;396);(180;252)

\(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\)
Suy ra \(\frac{a}{5}-\frac{2}{15}=\frac{2}{b}\)
\(\frac{3a}{15}-\frac{2}{15}=\frac{2}{b}\)
\(3a-\frac{2}{15}=\frac{2}{b}\)
Suy ra \((3a-2).b=30\). Suy ra 3a - 2 và b thuộc Ư\((30)\)
Vì a,b thuộc \(ℕ^∗\)
3a-2 | 3 | 10 | 5 | 6 | 1 | 30 | 2 | 15 |
b | 10 | 3 | 6 | 5 | 30 | 1 | 15 | 2 |
a | loại | 4 | loại | loại | 1 | loại | loại | loại |
Vậy

Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a + b = 66 (1)
GCD(a, b) = 6 (2)
Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.
Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:
a = 5m
b = 6n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
5m + 6n = 66
Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.
Thử m = 1, ta có:
5 + 6n = 66
6n = 61
n ≈ 10.17
Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.
Thử m = 2, ta có:
10 + 6n = 66
6n = 56
n ≈ 9.33
Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.
Thử m = 3, ta có:
15 + 6n = 66
6n = 51
n ≈ 8.5
Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.
Thử m = 4, ta có:
20 + 6n = 66
6n = 46
n ≈ 7.67
Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.
Thử m = 5, ta có:
25 + 6n = 66
6n = 41
n ≈ 6.83
Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.
Thử m = 6, ta có:
30 + 6n = 66
6n = 36
n = 6
Với m = 6 và n = 6, ta có:
a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36
Vậy, hai số tự nhiên cần tìm là 30 và 36.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a - b = 84 (1)
UCLN(a, b) = 12 (2)
Ta có thể viết lại a và b dưới dạng:
a = 12m
b = 12n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
12m - 12n = 84
Chia cả hai vế của phương trình cho 12, ta có:
m - n = 7 (3)
Từ (2) và (3), ta có hệ phương trình:
m - n = 7
m + n = 12
Giải hệ phương trình này, ta có:
m = 9
n = 3
Thay m và n vào a và b, ta có:
a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36
Vậy, hai số tự nhiên cần tìm là 108 và 36.
1) \(a+b=66;UCLN\left(a;b\right)=6\)
\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)
mà có 1 số chia hết cho 5
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)
Vậy 2 số đó là 30 và 36 thỏa đề bài
2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)
\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)
Vậy 2 số đó là 48 và 36 thỏa đề bài

Gọi hai số tự nhiên cần tìm là a, b. Thì (a,b) = 6 và a.b = 432. Ta đã biết (a,b).[a,b] = a.b. Vậy 6.[a,b] = 432, Do đó BCNN của hai số đó là: [a,b] = 432 : 6 = 72. Hai số cần tìm là a = 72 và b = 6. Một số là BCNN của hai số và số bé là UCLN của chúng.
Đặt a=36n, b=36n ,ƯCLN (m;n)=1 với m;n thuộc Z
Ta có a+b=432 nên 36n+36m= 432 =>36 .(m+n)=432
m+n=432:36
m+n=12
=> ta xét từng số từ 1 ->11 .VD
m=1=>n=11=>ƯCLN =1(chọn)=>a=36;b=396
Nếu ƯCLN khôgn bằng 1 thì loại
Duyệt đi
ƯCLN là 36, tính ra 2 số tự nhiên đó là bội của 36.
Tóm tắt bài toán :
? : 36 = ?(3)
?(2) : 36 = ?(4)
?(3) & ?(4) chia hết cho 36
Bây giờ tìm B(36);
B(36) là : 0;36;72;108;144;180;216;252;288;324;360;396;432...
Bắt cặp các số như sau có tổng là 432
36 vs 432
72 vs 396 x
108 vs 324 x
144 vs 288 x
252 vs 180 x
Mình đã tính tất cả các cặp ( viết vô dài lém - khỏi nhá ! )
=> kết quả là cặp đầu tiên - 36 vs 432.
Mik khổ công làm bài này hết 1 tiếng đó ! Nhớ cho mình để mình vui lòng nha ! Mình trả lời đầu mà ! Hi !