K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2021
câu a,b bạn tự làm nhécâu c thì bạn chứng minh tam giác PAF đồng dạng với tam giác MBF (cạnh // và cùng góc) rồi rút tỉ số MB/MF=AP/FPdễ dàng nhận thấy MB = ME; AP=PE ( tc 2 tiếp tuyến cắt nhau)=> đpcm
12 tháng 12 2021

giúp với mọi ng

 

19 tháng 8

a) Chứng minh \(M C\) là tiếp tuyến của đường tròn

\(A M\) là tiếp tuyến tại \(A\), nên \(A M \bot A O\).

Ta có:

  • \(O M\) là đường thẳng đi qua \(O\) và vuông góc với \(A C\) (theo giả thiết).
  • Tam giác \(A O C\) vuông tại \(A\) (do \(A B\) là đường kính nên \(\angle A C B = 90^{\circ}\)).

Suy ra:

  • \(A C \bot O C\)
  • \(O M \bot A C\)

\(\Rightarrow O M / / O C\)

Xét tam giác \(A O C\), vì \(A M\) là tiếp tuyến tại \(A\) nên \(\angle M A C = \angle O C A\).

\(\angle M A C = \angle M C A\)
\(\Rightarrow M C\) tạo với bán kính \(O C\) một góc vuông tại \(C\)

\(\Rightarrow M C\) tiếp xúc với đường tròn tại \(C\).
→ MC là tiếp tuyến của đường tròn

b) Gọi \(H\) là hình chiếu của \(C\) trên \(A B\); \(I\) là giao điểm của \(M B\)\(C H\). Chứng minh: \(C I = I H\).

Chứng minh:

  • Tam giác \(A B C\) vuông tại \(A\)\(H\) là chân đường vuông góc từ \(C\) xuống \(A B\)\(H\) là hình chiếu của \(C\) lên đường kính → \(C H\) là đường cao ứng với cạnh huyền trong tam giác vuông \(A C B\).
  • Theo tính chất đường tròn và tiếp tuyến:
    \(M C\) là tiếp tuyến tại \(C\), \(M B\) là cát tuyến.
    Ta có: \(M B^{2} = M C \cdot M A\) (định lý tiếp tuyến – cát tuyến).
  • Xét tam giác \(M C H\), đường thẳng \(M B\) cắt \(C H\) tại \(I\).

Sử dụng hệ thức của tam giác vuông nội tiếp đường tròn:

\(C H^{2} = C I \cdot I H\)

Nhưng vì tam giác \(A B C\) vuông tại \(A\) nên \(C H^{2} = A H \cdot H B\)

Mà theo tính chất đồng dạng của các tam giác \(\Rightarrow C I = I H\).

\(C I = I H\).

a: ΔOAC cân tại O

mà OM là đường cao

nên OM là phân giác của góc AOC

Xét ΔOAM và ΔOCM có

OA=OC

\(\hat{AOM}=\hat{COM}\)

OM chung

Do đó: ΔOAM=ΔOCM

=>\(\hat{OAM}=\hat{OCM}\)

=>\(\hat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)

b: Gọi K là giao điểm của BC và AM

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC⊥KB tại C

=>ΔACK vuông tại C

Ta có: \(\hat{MAC}+\hat{MKC}=90^0\) (ΔACK vuông tại C)

\(\hat{MCA}+\hat{MCK}=\hat{ACK}=90^0\)

\(\hat{MAC}=\hat{MCA}\)

nên \(\hat{MKC}=\hat{MCK}\)

=>MK=MC

mà MA=MC

nên MA=MK(1)

Ta có: CH⊥AB

KA⊥BA

Do đó: CH//KA

Xét ΔBAM có IH//AM

nên \(\frac{IH}{AM}=\frac{BI}{BM}\left(2\right)\)

Xét ΔBMK có CI//KM

nên \(\frac{CI}{KM}=\frac{BI}{BM}\left(3\right)\)

Từ (1),(2),(3) suy ra IH=IC


a) Xét (O) có 

ΔBMA nội tiếp đường tròn(B,M,A∈(O))

BA là đường kính(gt)

Do đó: ΔBMA vuông tại M(Định lí)

Xét (O) có 

AB là đường kính của (O)(gt)

nên O là trung điểm của AB

Xét ΔBMA có 

O là trung điểm của AB(gt)

C là trung điểm của AM(gt)

Do đó: OC là đường trung bình của ΔBMA(Định nghĩa đường trung bình của tam giác)

⇒OC//BM và \(OC=\dfrac{BM}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: OC//BM(cmt)

BM⊥BA(ΔBMA vuông tại M)

Do đó: OC⊥AM(Định lí 2 từ vuông góc tới song song)

Xét tứ giác OCNB có

\(\widehat{OCN}\) và \(\widehat{OBN}\) là hai góc đối

\(\widehat{OCN}+\widehat{OBN}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OCNB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét ΔNBA vuông tại B và ΔOCA vuông tại C có

\(\widehat{OAC}\) chung

Do đó: ΔNBA∼ΔOCA(g-g)

\(\dfrac{AB}{AC}=\dfrac{AN}{AO}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AC\cdot AN=AO\cdot AB\)(đpcm)

c) Ta có: OC⊥AN(cmt)

mà E∈OC(gt)

nên EC⊥NA

Xét ΔNEA có 

EC là đường cao ứng với cạnh NA(cmt)

AB là đường cao ứng với cạnh NE(gt)

EC cắt AB tại O(gt)

Do đó: O là trực tâm của ΔNEA(Định lí ba đường cao của tam giác)

⇒NO⊥AE(đpcm)

11 tháng 2 2021

Cho mik xin cái hình vs ạ