cho đường tròn (O) và (O') ngoài nhau. kẻ tiếp tuyến chung ngoài AB của 2 đường tròn (A thuộc (O), B thuộc (O')). vẽ các tiếp tuyến chung trong của 2 đường tròn lần lượt cắt AB tại C và D. CMR AC = BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác AO’C nội tiếp trong đường tròn (O) có O’C là đường kính nên
Suy ra: CA ⊥ O’A tại điểm A
Vậy CA là tiếp tuyến của đường tròn (O’)
Tam giác BO’C nội tiếp trong đường tròn (O) có O’C là đường kính nên
Suy ra: CB ⊥ O’B tại điểm B
Vậy CB là tiếp tuyến của đường tròn (O’)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta chứng minh E là trung điểm của AC nên OE = 1 2 BC
Tương tự ta có OF = 1 2 DB
Mà BC < BD ta suy ra OE < OF
b, Chứng minh được A E 2 = A O 2 - O E 2 và A F 2 = A O 2 - O F 2
Từ đó ta có A E 2 > A F 2 => AE > AF
=> sđ A E ⏜ ; A F ⏜
![](https://rs.olm.vn/images/avt/0.png?1311)
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên:
O ’ P 2 = O ’ A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π . r 2 = 2 π ( c m 2 ) .
![](https://rs.olm.vn/images/avt/0.png?1311)
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên: O ' P 2 = O ' A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π · r 2 = 2 π cm 2
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét (OC/2) có
góc OMC là góc nội tiếp chắn nửa đường tròn
=>góc OMC=90 độ
=>CM vuông góc MO
Xét (O') có
góc BPC nội tiếp
BC là đường kính
=>góc BPC=90 độ
=>BP vuông góc CM
=>BP//OM
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét (\(\dfrac{MO}{2}\)) có
ΔOAM nội tiếp đường tròn
OM là đường kính
Do đó: ΔOAM vuông tại A
hay MA là tiếp tuyến có A là tiếp điểm của (O)
Xét \(\left(\dfrac{OM}{2}\right)\) có
ΔOBM nội tiếp đường tròn
OM là đường kính
Do đó: ΔOBM vuông tại B
hay MB là tiếp tuyến có B là tiếp điểm của (O)