chứng minh 2^100<2.10^30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : \(10^{30}=10^{10.3}=\left(10^3\right)^{10}=1000^{10}\)
và \(2^{100}=2^{10.10}=1024^{10}\)
Vì 1000<1024 => \(1000^{10}<1024^{10}\) => \(10^{30}<2^{100}\)
Vậy \(10^{30}<2^{100}\)
k nha bạn đúng 100% đó


=3/1.4+5/4.9+7/9.16+......+19/81.100
=(1/1-1/4)+(1/4-1/9)+........+(1/81-1/100)
=1-1/100
=99/100<1(đpcm)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\left(\frac{1}{1^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^2}-\frac{1}{3^2}\right)+\left(\frac{1}{3^2}-\frac{1}{4^2}\right)+...+\left(\frac{1}{9^2}-\frac{1}{10^2}\right)\)
\(=\frac{1}{1}-\frac{1}{10^2}\)
\(=1-\frac{1}{100}<1\)
Vậy _____________________

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)
\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow A< 1\text{(đpcm) }\)

1030=(103)10=100010
2100=(210)10=102410
Vì:100010<102410 suy ra 1030<2100
Mà 1030<1031(nhiều hơn 1 số 0)
Mà 1030<2100 24 đơn vị
suy ra:1030<2100<1031

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^{10}.10^2}\)
\(=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^{10}}-\dfrac{1}{10^2}\)
\(=1-\dfrac{1}{10^2}< 1\)
\(\Rightarrowđpcm\)

\(S=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+.....+\frac{19}{9^2\cdot10^2}\)
\(\Rightarrow S=\frac{3}{1\cdot4}+\frac{5}{4\cdot9}+....+\frac{19}{81\cdot100}\)
\(\Rightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{100}\)
\(\Rightarrow S=1-\frac{1}{100}=\frac{99}{100}< 1\left(ĐPCM\right)\)

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.....+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+.....+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=1-\frac{1}{10^2}< 1\)

\(a)\)Ta có :
\(10^{30}=\left(10^3\right)^{10}=1000^{10}< 1024^{10}=\left(2^{10}\right)^{10}=2^{100}\) \(\left(1\right)\)
\(2^{100}=2^{31}.2^6.2^{63}=2^{31}.64.\left(2^9\right)^7=2^{31}.64.512^7\) \(\left(2\right)\)
\(10^{31}=2^{31}.5^3.5^{28}=2^{31}.125.\left(5^4\right)^7=2^{31}.125.625^7\) \(\left(3\right)\)
Từ (1), (2) và (3) suy ra \(10^{30}< 2^{100}< 10^{31}\) ( đocm )
\(b)\) Ta có :
\(10^{30}\) là số nhỏ nhất có 31 chữ số
\(10^{31}\) là số nhỏ nhất có 32 chữ số
Mà \(10^{30}< 2^{100}< 10^{31}\)
\(\Rightarrow\)\(2^{100}\) có 31 chữ số
Vậy \(2^{100}\) có 31 chữ số
Chúc bạn học tốt ~
Ta có:2^100<2.10^30
Vì 2^100<10^30
nên 2^100<2.10^30