\(2\sqrt50+\sqrt36-10\sqrt2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Sure rằng đề bài sai, không ai cho 2 số bên vế trái giống hệt nhau như vậy cả
(Hơn nữa nếu đề bài đúng thì nghiệm của pt có logarit, lớp 9 chắc chắn chưa học)

a: \(\sqrt{6-4\sqrt2}+\sqrt{22-12\sqrt2}\)
\(=\sqrt{4-2\cdot2\cdot\sqrt2+2}+\sqrt{18-2\cdot3\sqrt2\cdot2+4}\)
\(=\sqrt{\left(2-\sqrt2\right)^2}+\sqrt{\left(3\sqrt2-2\right)^2}\)
\(=2-\sqrt2+3\sqrt2-2=2\sqrt2\)
b: \(\sqrt{\left(\sqrt3-\sqrt2\right)^2}+\sqrt2=\sqrt3-\sqrt2+\sqrt2=\sqrt3\)
c: \(3\sqrt5-\sqrt{\left(1-\sqrt5\right)^2}\)
\(=3\sqrt5-\left|1-\sqrt5\right|\)
\(=3\sqrt5-\left(\sqrt5-1\right)=2\sqrt5+1\)
d:Sửa đề: \(\sqrt{17-12\sqrt2}+\sqrt{6+4\sqrt2}\)
\(=\sqrt{9-2\cdot3\cdot2\sqrt2+8}+\sqrt{4+2\cdot2\cdot\sqrt2+2}\)
\(=\sqrt{\left(3-2\sqrt2\right)^2}+\sqrt{\left(2+\sqrt2\right)^2}=3-2\sqrt2+2+\sqrt2=5-\sqrt2\)

a: \(\left(2\sqrt{10}+3\sqrt{3}\right)^2=67+12\sqrt{30}\)
\(\left(3\sqrt{5}+2\sqrt{7}\right)^2=77+12\sqrt{35}\)
mà \(12\sqrt{30}< 12\sqrt{35};67< 77\)
nên \(2\sqrt{10}+3\sqrt{3}< 3\sqrt{5}+2\sqrt{7}\)
b: \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}\)
\(2^2=4\)
mà 5>4
nên \(\sqrt{2}+\sqrt{3}>2\)

\(Z_L=\omega L=100\Omega\)
\(I_0=\frac{U_0}{Z_L}=\frac{100\sqrt{2}}{100}=\sqrt{2}\)(A)
Dòng điện i trễ pha \(\frac{\pi}{2}\) so với u nên:
\(i=\sqrt{2}\cos\left(100t-\frac{\pi}{2}\right)\)(A)
Ta có:
\(2\sqrt{50}+\sqrt{36}-10\sqrt{2}\\ =10\sqrt{2}+6-10\sqrt{2}\\ =6\)