chứng minh rằng a^2016+b^2016<(=)c^2016 với a;b;c là độ dài các cạnh trong tam giác vuông Và c là độ dài cạnh huyền
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hay mình làm cụ thể hơn cho bạn dễ hiểu
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta quy đồng mẫu a\b và a+2016\b+2016
=>a\b=a(b+2016)\b(b+2016)=a.b+a.2016\m (m là mẫu chung)
a+2016\b+2016=(a+2016)b\(b+2016)b=b.a+b.2016\m (m là mẫu chung)
Vì hai phân số trên đã quy đông về cùng 1 mẫu là m=> ta so sánh 2 tử số vs nhau:
so sánh a.b+a.2016 vs b.a+b.2016
vì a.b và b.a bằng nhau=>so sánh a.2016 và b.2016
vì a>b=>a.2016>b.2016=>a\b>a+2016\b+2016
đề sai rùi bn ạ!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\\ \Rightarrow A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\left(1\right)\\ A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow1< A< B\\ \Rightarrow A\notin Z\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\left(a^{2016}+b^{2016}\right).\left(c^{2016}-d^{2016}\right)=\left(a^{2016}-b^{2016}\right).\left(c^{2016}+d^{2016}\right)\)
\(\Leftrightarrow ac^{2016}-ad^{2016}+bc^{2016}-bd^{2016}=ac^{2016}+ad^{2016}-bc^{2016}-bd^{2016}\)
\(\Leftrightarrow-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}\)
nếu \(-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}=0\)
\(\Rightarrow ad^{2016}-bc^{2016}=0\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\left(1\right)\)
nếu \(\text{}-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}\ne0\Rightarrow ad=-bc\Rightarrow\frac{a}{b}=-\frac{c}{d}\left(2\right)\)
từ (1) và (2) => đpcm