Cho hàm số Biết rằng là các giá tri thoả mãn tiếp tuyến của đồ thị hàm số tại điểm song song với đường thẳng Khi đó giá trị của bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án A
Ta có: x = 1 ⇒ y = - 2 ⇒ - 2 = 1 + b a - 2 ⇔ - 2 a + 4 = b + 1 ⇔ 2 a + b = 3
Do tiếp tuyến A song song với đường thẳng d : 3 x + y - 4 = 0 hay y = - 3 x + 4 nên y ' 1 = - 2 - a b a - 2 2 = - 3 ⇒ - 2 - a 3 - 2 a a - 2 2 = - 3 ⇔ - 2 a 2 + 3 a + 2 a - 2 2 = - 3 ⇔ a - 2 - 2 a - 1 a - 2 2 = - 3
⇔ - 2 a - 1 = - 3 ⇔ a = 1 ⇒ b = 1 ⇒ a - 3 b = - 2

a: Thay x=-1 và y=5 vào y=ax+6, ta được:
6-x=5
hay x=1
b: Vì đồ thị hàm số y=ax+b đi qua hai điểm (1;1) và (0;-2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1-b=1-\left(-2\right)=1+2=3\\b=-2\end{matrix}\right.\)

a: f(5)=75/2
=>\(a\cdot5^2=\dfrac{75}{2}\)
=>\(a=\dfrac{75}{2}:25=\dfrac{3}{2}\)
Vậy: \(y=f\left(x\right)=\dfrac{3}{2}x^2\)
Khi x=-3 thì \(y=\dfrac{3}{2}\left(-3\right)^2=\dfrac{3}{2}\cdot9=\dfrac{27}{2}\)
b: y=15
=>\(\dfrac{3}{2}x^2=15\)
=>\(x^2=10\)
=>\(x=\pm\sqrt{10}\)

Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

em gửi bài qua fb thầy chữa cho nhé, tìm fb của thầy bằng sđt: 0975705122 nhé.
Đáp án A
Ta có 3 x + y − 4 = 0 ⇔ y = 4 − 3 x
y 1 = − 2 y ' 1 = − 3 ⇔ 1 + b a − 2 = − 2 − 2 − a b a − 2 2 = − 3
⇔ b = 3 − 2 a − 2 − a 3 − 2 a = − 3 a 2 − 4 a + 4
⇔ b = 3 − 2 a a = 1 a = 2 ⇔ a = 1 b = 1 a = 2 b = − 1 L
Vậy a = 1 ; b = 1 ⇒ a + b = 2