Cho tam giác ABC có 3 góc nhọn. Vẽ đường tròn tâm O, đường kính BC, lần lượt cắt AB và AC tại D,E; BE cắt CD tại H. Chứng minh AH vuông góc BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét (O) có
ΔDBC nội tiếp đường tròn(D,B,C∈(O))
BC là đường kính(gt)
Do đó: ΔDBC vuông tại D(Định lí)
⇒CD⊥BD tại D
⇒CD⊥AB tại D
⇒HD⊥AD tại D
Xét ΔADH có HD⊥AD tại D(cmt)
nên ΔADH vuông tại D(Định nghĩa tam giác vuông)
Ta có: ΔADH vuông tại D(cmt)
mà DI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)
nên \(DI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C∈(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
⇒BE⊥CE tại E
⇒BE⊥AC tại E
⇒HE⊥AE tại E
Xét ΔAEH có AE⊥EH tại E(cmt)
nên ΔAEH vuông tại E(Định nghĩa tam giác vuông)
Ta có: ΔAEH vuông tại E(cmt)
mà EI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)
nên \(EI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Từ (1) và (2) suy ra ID=IE
hay I nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OD=OE(=R)
nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra OI là đường trung trực của DE
hay OI⊥DE(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó;ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)
nên HECF là tứ giác nội tiếp
=>\(\widehat{HEF}=\widehat{HCF}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét (O) có
\(\widehat{DBE}\) là góc nội tiếp chắn \(\stackrel\frown{DE}\)
Do đó: \(\widehat{DBE}=\dfrac{1}{2}\cdot sđ\stackrel\frown{DE}\)(Định lí góc nội tiếp)
\(\Leftrightarrow\widehat{DBE}=\dfrac{1}{2}\cdot60^0=30^0\)
Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C∈(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
⇒BE⊥CE tại E
hay BE⊥AC tại E
Ta có: ΔAEB vuông tại E(BE⊥AC tại E)
nên \(\widehat{EAB}+\widehat{ABE}=90^0\)(hai góc nhọn phụ nhau)
⇒\(\widehat{BAC}=90^0-\widehat{ABE}=90^0-30^0\)
⇒\(\widehat{BAC}=60^0\)
Vậy: \(\widehat{BAC}=60^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)DB tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
![](https://rs.olm.vn/images/avt/0.png?1311)
a: góc BDC=góc BEC=90 độ
=>CD vuông góc AB, BE vuông góc AC
góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BCDE là tứ giác nội tiếp
b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có
\(\widehat{HCD}=\widehat{ABD}\)
Do đó: ΔDHC\(\sim\)ΔDAB
Suy ra: DH/DA=DC/DB
hay \(DH\cdot DB=DA\cdot DC\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: AH⊥BC