Chứng minh rằng phương trình 3 x 5 + 15x - 8 = 0 chỉ có một nghiệm thực
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hàm số f(x) = 3 x 5 + 15x - 8 là hàm số liên tục và có đạo hàm trên R.
Vì f(0) = -8 < 0, f(1) = 10 > 0 nên tồn tại một số x0 ∈ (0;1) sao cho f(x0) = 0, tức là phương trình f(x) = 0 có nghiệm.
Mặt khác, ta có y' = 15 x 4 + 5 > 0, ∀x ∈ R nên hàm số đã cho luôn đồng biến. Vậy phương trình đó chỉ có một nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Để chứng minh pt có đúng 1 nghiệm thì phải sử dụng kiến thức đơn điệu của lớp 12: hàm đơn điệu trên 1 khoảng thì có tối đa 1 nghiệm trên khoảng ấy
Đặt \(f\left(x\right)=4x^5+20188x+2019\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=2019>0\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(4+\dfrac{20188}{x^4}+\dfrac{2019}{x^5}\right)=-\infty.4=-\infty< 0\)
\(\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(-\infty;0\right)\) (1)
Mặt khác \(f'\left(x\right)=20x^4+20188>0;\forall x\)
\(\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow f\left(x\right)\) có tối đa 1 nghiệm trên R (2)
(1);(2) \(\Rightarrow f\left(x\right)\) có đúng 1 nghiệm thực trên R
![](https://rs.olm.vn/images/avt/0.png?1311)
VT sẽ được phân tích thành
\(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\left(3y+x\right)=33\)
Nếu x,y là các số nguyên =>VT là tích của 5 số nguyên, mà 33 chỉ là tích của nhiều nhất là 4 số nguyên => vô lí=> PT k có nghiệm nguyên
^_^
![](https://rs.olm.vn/images/avt/0.png?1311)
* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có :
pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)
pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)
pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)
\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*)
Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)
\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)
trái với (*)
Vậy có ít nhất một phương trình có hai nghiệm phân biệt
cái kia chưa bt làm -_-
![](https://rs.olm.vn/images/avt/0.png?1311)
- Đặt f(x) = (x – a).(x - b) + (x - b).(x - c)+ (x – c).(x- a) thì f(x) liên tục trên R.
- Không giảm tính tổng quát, giả sử a ≤ b ≤ c
- Nếu a = b hoặc b = c thì f(b) = ( b - a).(b - c) = 0 suy ra phương trình có nghiệm x = b.
- Nếu a < b < c thì f(b) = (b - a)(b - c) < 0 và f(a) = (a - b).(a - c) >) 0
do đó tồn tại x 0 thuộc khoảng (a, b) để f x 0 = 0
- Vậy phương trình đã cho luôn có ít nhất một nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Các giải của các bài toán này là sử dụng tổng các delta em nhé
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a) $f(x)=x^5-3x+3$ liên tục trên $R$
$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$
Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$
Nghĩa là pt đã cho luôn có nghiệm.
b) $f(x)=x^5+x-1$ liên tục trên $R$
$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$
Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$
Hay pt đã cho luôn có nghiệm.
c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$
$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$
$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$
Hay pt đã cho luôn có nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(f\left(x\right)=\left(x-a_1\right)\left(x-a_3\right)\left(x-a_5\right)+\left(x-a_2\right)\left(x-a_4\right)\left(x-a_6\right)\)
\(f\left(a_1\right)=\left(a_1-a_2\right)\left(a_1-a_4\right)\left(a_1-a_6\right)< 0\)
\(f\left(a_2\right)=\left(a_2-a_1\right)\left(a_2-a_3\right)\left(a_2-a_5\right)>0\)
\(f\left(a_4\right)=\left(a_4-a_1\right)\left(a_4-a_3\right)\left(a_4-a_5\right)< 0\)
\(f\left(a_6\right)=\left(a_6-a_1\right)\left(a_6-a_3\right)\left(a_6-a_5\right)>0\)
\(\Rightarrow f\left(x\right)\) có nghiệm thuộc các khoảng \(\left(a_1,a_2\right);\left(a_2,a_4\right);\left(a_4,a_6\right)\)
mà bậc cao nhất của f(x) là 3 nên f(x) có tối đa 3 nghiệm
=> dpcm
Hàm số f(x) = 3 x 5 + 15x - 8 là hàm số liên tục và có đạo hàm trên R.
Vì f(0) = -8 < 0, f(1) = 10 > 0 nên tồn tại một số x 0 ∈ (0;1) sao cho f( x 0 ) = 0, tức là phương trình f(x) = 0 có nghiệm.
Mặt khác, ta có y' = 15 x 4 + 5 > 0, ∀ x ∈ R nên hàm số đã cho luôn đồng biến. Vậy phương trình đó chỉ có một nghiệm.