Cho x, y, z là các số thực thỏa mãn điều kiện . Tìm giá trị lớn nhất của biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Pt đầu tương đương: \(\sqrt[3]{x^2}+2\sqrt[3]{y^2}+4\sqrt[3]{z^2}=7\)
Pt 2 tương đương:
\(\left(xy^2+z^4\right)^2-\left(xy^2-z^4\right)^2=4\)
\(\Leftrightarrow4xy^2z^4=4\)
\(\Leftrightarrow xy^2z^4=1\) (1)
Quay lại pt đầu, áp dụng AM-GM:
\(7=\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z}\ge7\sqrt[7]{\sqrt[3]{x^2}.\sqrt[3]{y^4}.\sqrt[3]{z^8}}\)
\(\Leftrightarrow\sqrt[21]{x^2y^4z^8}\le1\)
\(\Leftrightarrow x^2y^4z^8\le1\)
\(\Rightarrow\left|xy^2z^4\right|\le1\Rightarrow xy^2z^4\le1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x^2=y^2=z^2\\xy^2z^4=1\\x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=\pm1\\z=\pm1\end{matrix}\right.\)
Các bộ thỏa mãn là: \(\left(1;1;1\right);\left(1;1;-1\right);\left(1;-1;1\right);\left(1;-1;-1\right)\)

Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)
nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)
mà 2x+y-z=0
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)
Do đó: x=3; y=2; z=8

Giả sử \(x\le y\le z\) do \(xyz\le0\) nên\(x\le0\)
Do \(x^2+y^2+z^2=9\Rightarrow x^2\le9\Rightarrow x\in\left[-3;0\right]\)
Ta có \(yz\le\left(\frac{y+z}{2}\right)^2\le\frac{y^2+z^2}{2}\)
Do đó : \(2\left(x+y+z\right)-xyz=2x+2\left(y+z\right)-xyz\le2x+2\sqrt{2\left(y^2+z^2\right)}-x.\frac{y^2+z^2}{2}\)
\(=2x+2\sqrt{2\left(9-x^2\right)}-\frac{x\left(9-x^2\right)}{2}=\frac{x^3}{2}-\frac{5x}{2}+2\sqrt{2\left(9-x^2\right)}\)
Xét hàm số :
\(f\left(x\right)=\frac{x^3}{2}-\frac{5x}{2}=2\sqrt{2\left(9-x^2\right)}\) với \(x\in\left[-3;0\right]\) \(\Rightarrow f'\left(x\right)=\frac{3x^2}{2}-\frac{5}{2}-\frac{2\sqrt{2}x}{\sqrt{9-x^2}}\)
Xét \(f'\left(x\right)=0\Leftrightarrow\frac{3x^2}{2}-\frac{5}{2}-\frac{2\sqrt{2}x}{\sqrt{9-x^2}}=0\Leftrightarrow\sqrt{9-x^2}\left(5-3x^2\right)=-4\sqrt{2}x\)
\(\Leftrightarrow\left(9-x^2\right)\left(5-3x^2\right)=32x^2\) (với điều kiện \(5-3x^2\ge0\))
\(\Leftrightarrow9x^9-111x^4+327x^2-225=0\)
\(\Leftrightarrow x^2=1;x^2=3;x^2=\frac{25}{3}\)
\(x^2\le\frac{5}{3}\) nên \(x^2=1\Leftrightarrow x=1,x=-1\) (loại)
Ta có \(f\left(-3\right)=-6;f\left(1\right)=10;f\left(0\right)=6\sqrt{2}\) suy ra Max \(f\left(x\right)=f\left(-1\right)=10\)
\(2\left(x+y+z\right)-xyz\le f\left(x\right)\le10\)
Dấu = xảy ra khi x=-1, y=z và \(x^2+y^2+z^2=9\)
\(\Leftrightarrow x=-1;y=z=2\)