K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

ta có (1)*2=2x2  -10x+2k

gọi nhiệm pt ( 1) là x1  , pt(2) là x2  

=> (1):2x12  -10x1+2k=0 ;(2):x22-7x2+2k=0      mà :x2=2x1

=> (1):2x12  -10x1+2k=0(3) ;(2):x12-7x1+2k=0 (4)

ta có (3)-(4)=x12-3x=0 => x1(x1-3)=0 =>x1=0 hoặc 3

thay vô (1) ta được :k=0 hoặc 6 

bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:

Để pt $(1)$ và $(2)$ có nghiệm thì \(\left\{\begin{matrix} \Delta(1)=25-4k\geq 0\\ \Delta(2)=49-8k\geq 0\end{matrix}\right.\Leftrightarrow k\leq \frac{49}{8}\)

Gọi $t$ là nghiệm $(1)$ thì yêu cầu đề bài được xử lý khi $2t$ là nghiệm của $(2)$

\(\Leftrightarrow \left\{\begin{matrix} t^2-5t+k=0\\ (2t)^2-14t+2k=0\end{matrix}\right.\)

\(\Rightarrow 2(t^2-5t)-4t^2+14t=0\)

$\Leftrightarrow t=0$ hoặc $t=2$.

Nếu $t=0$ thì hiển nhiên loại

Nếu $t=2$ thì $k=6$.

Thử lại thấy thỏa mãn.

2:

a: y1+y2=-(x1+x2)=-5

y1*y2=(-x1)(-x2)=x1x2=6

Phương trình cần tìm có dạng là;

x^2+5x+6=0

b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6

y1*y2=1/x1*1/x2=1/x1x2=1/6

Phương trình cần tìm là:

a^2-5/6a+1/6=0

7 tháng 4 2022

1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

   \(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

  \(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)

7 tháng 4 2022

\(1,3x^2+4x+1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)

\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)

\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)

\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{S^2-2P-S}{P-S+1}\)

\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)

\(=\dfrac{11}{12}\)

Vậy \(C=\dfrac{11}{12}\)

9 tháng 4 2023

a: Khi m = -4 thì:

\(x^2-5x+\left(-4\right)-2=0\)

\(\Leftrightarrow x^2-5x-6=0\)

\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)

Pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)

9 tháng 4 2023

Anh làm câu b nữa ạ, sửa câu b \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Lời giải:

Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$

$\Leftrightarrow m\leq \frac{33}{4}$

Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-5$

$x_1x_2=m-2$

Khi đó:

$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$

$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$

$\Leftrightarrow m-2+5+1=\frac{-7}{2}$

$\Leftrightarrow m=\frac{-15}{2}$ (tm)

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Lời giải:

Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$

$\Leftrightarrow m\leq \frac{33}{4}$

Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-5$

$x_1x_2=m-2$

Khi đó:

$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$

$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$

$\Leftrightarrow m-2+5+1=\frac{-7}{2}$

$\Leftrightarrow m=\frac{-15}{2}$ (tm)

\(a,\) \(x^2+5x-3m=0\left(1\right)\)

 \(\Rightarrow\Delta=b^2-4ac=5^2-4.\left(-3m\right)=12m+25\)

\(Để\) phương trình \((1)\) có 2 nghiệm  \(x_1,x_2\) ta có :

\(\Leftrightarrow\Delta\ge0\Rightarrow12m+25\ge0\)

\(\Rightarrow12m\ge-25\Rightarrow m\ge\dfrac{-25}{12}\)

 

 

22 tháng 2

a) x²+5x−3m=0 ⇒Δ=b²−4ac=52−4·(−3m)=12m+25

Để phương trình có 2 nghiệm $x_{1}$, $x_{2}$ ta có :

⇔Δ≥0⇒12m+25≥0

⇒12m≥−25

⇒m≥$\frac{-25}{12}$

b) Theo Viète ta có:

$\left \{ {{x_{1}+x_{2}=-5} \atop {x_{1}x_{2}=-3m}} \right. $

Ta có: $\frac{2}{x_{1}}$ + $\frac{2}{x_{2}}$ = $\frac{2x_{1} + 2x_{2}}{x_{1}^{2}x_{2}^{2}}$ = $\frac{2(x_{1}^{2}+x_{2}^{2})}{(x_{1}x_{1})^{2}}$ = $\frac{50+12m}{9m^2}$

$\frac{2}{x_{1}}$ · $\frac{2}{x_{2}}$ = $\frac{4}{(x_{1}x_{1})^{2}}$ =$\frac{4}{9m^2}$

Vậy $\frac{2}{x_{1}}$ và $\frac{2}{x_{2}}$ là 2 $n_{0}$ của phương trình:

${x^2}$ - $\frac{50+12m}{9m^2}$ $x$ + $\frac{4}{9m^2}$ = 0