Tìm tất cả các số thực x, y để hai số phức là hai số phức liên hợp của nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1.
Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)
\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)
\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)
\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)
\(\Rightarrow n\) lẻ thì A không tối giản
\(\Rightarrow n\) chẵn thì A tối giản
2.
Giả thiết tương đương:
\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)
Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)
Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)
\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)
\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\text{VT}(1^2+1^2+1^2)\geq (1+\frac{x}{y+z}+1+\frac{y}{x+z}+1+\frac{z}{x+y})^2$
$\Leftrightarrow 3\text{VT}\geq (3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y})^2$
$ = \left[3+\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zy+zx}\right]^2$
$\geq \left[3+\frac{(x+y+z)^2}{2(xy+yz+xz)}\right]^2$
$\geq \left[3+\frac{3(xy+yz+xz)}{2(xy+yz+xz)}\right]^2=\frac{81}{4}$
$\Rightarrow \text{VT}\geq \frac{27}{4}$
Dấu "=" xảy ra khi $x=y=z>0$
Áp dụng BĐT Bunhiacopxky:
VT(12+12+12)≥(1+��+�+1+��+�+1+��+�)2VT(12+12+12)≥(1+y+zx+1+x+zy+1+x+yz)2
⇔3VT≥(3+��+�+��+�+��+�)2⇔3VT≥(3+y+zx+x+zy+x+yz)2
=[3+�2��+��+�2��+��+�2��+��]2=[3+xy+xzx2+yz+yxy2

a: =>-2x=90/91
hay x=-45/91
b: =>2x=-7
hay x=-7/2
c: ->-3x=-12
hay x=4

ta có:\(A=\frac{8^9+12}{8^9+7}=\frac{8^9+7+5}{8^9+7}=\frac{8^9+7}{8^9+7}+\frac{5}{8^9+7}=1+\frac{5}{8^9+7}\)
\(B=\frac{8^{10}+4}{8^{10}-1}=\frac{8^{10}-1+5}{8^{10}-1}=\frac{8^{10}-1}{8^{10}-1}+\frac{5}{8^{10}-1}=1+\frac{5}{8^{10}-1}\)
vì 810-1>89+7
\(\Rightarrow\frac{5}{8^{10}-1}<\frac{5}{8^9+7}\)
\(\Rightarrow1+\frac{5}{8^{10}-1}<1+\frac{5}{8^9+7}\)
=>A<B

Bài 2:
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;0\right\}\)

Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9

Bài 1:
a: =>2x-9=10/91
=>2x=829/91
hay x=829/182
b: =>2x=-7
hay x=-7/2
c: =>-3x=-12
hay x=4

mình trả lời bài tìm x cho bạn nha
BCNN(5,2) =10
=)) x/20=y/10;y/10=z/15
=))x/20=y/10=z/15
x/20=y/10=z/15=2x/40=3y/30=4z/12
áp dụng dãy tính chất tỉ số bằng nhau ta có
2x/40=3y/30=4z/12=2x-3y+4z/40-30+12=330/22=15
x/20=15=))x=300
y/10=15=))y=150
z/15=15=))z=225
vậy x=300;y=150;z=225