Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f x = 4 x + x + 1 trên đoạn 1 ; 3 . Tính M - m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn D
Ta có 3x.f(x) -
x
2
f
'
(
x
)
=
2
f
2
(
x
)
Thay x = 1 vào ta được vì f(1) =
1
3
nên suy ra C = 2
Nên Ta có:
Khi đó, f(x) đồng biến trên [1;2]
Suy ra
Suy ra
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn A
Ta có:
Với nên f(x) đồng biến trên
ℝ
Với nên f(x) nghich biến trên
ℝ
Suy ra: Vì f(x) nghich biến trên
ℝ
nên
và
Từ đây ,ta suy ra:
=> chọn đáp án A
![](https://rs.olm.vn/images/avt/0.png?1311)
f ( x ) = 2 x 3 + 3 x 2 - 1 ⇒ f ' ( x ) = 6 x 2 + 6 x ; f ' ( x ) = 0 ⇔ [ x = 0 ( k t m ) x = - 1 ( t m )
Hàm số f(x) liên tục trên - 2 ; - 1 2 ,
có f ( - 0 ) = - 5 ; f ( - 1 ) = 0 ; f - 1 2 = - 1 2
⇒ m = m i n - 2 ; - 1 2 f ( x ) = - 5 ; M = m a x - 2 ; - 1 2 f ( x ) = 0 ⇒ P = M - m = 5
Chọn đáp án C.