Tập hợp các điểm cách đều đường thẳng a cố định một khoảng bằng 2 cm là ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Hai đường thẳng song song với đường thẳng a và cách đường thẳng a một khoảng là 2cm.
b) Đường tròn O B C 2 với O là trung điểm của BC
c) Đường thẳng trung trực của đoạn BC trừ trung điểm BC.

a) Đường tròn (A; 1cm)
b) Đường trung trực của đoạn thẳng AB
c) Tia phân giác trong của x O y ^

Chọn B.
Từ yêu cầu bài toán, theo định nghĩa mặt trụ tròn xoay ta chọn đáp án B.

Chọn đáp án D.
Phương pháp
Sử dụng khái niệm mặt trụ: Mặt tròn xoay sinh bởi đường thẳng l song song với Δ, cách Δ một khoảng R không đổi là mặt trụ tròn xoay trục Δ, đường sinh l, bán kính R.
Cách giải
Tập hợp các điểm M trong không gian cách đường thẳng Δ cố định một khoảng R không đổi (R>0) là một mặt trụ.
Là đường thẳng song song với a