Trong không gian với hệ tọa độ Oxyz, cho điểm M(8;1;1). Mặt phẳng (P) qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C thỏa mãn đạt giá trị nhỏ nhất có dạng là (P): ax + by + cz- 12 = 0. Khi đó a + b + c là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án là B.
Gọi M 0 ; y ; 0 ∈ O y .
Ta có: A M → = − 1 ; y − 1 ; − 2 ;
B M → = 1 ; y − 3 ; 9 ; A M → . B M → = − 1 + y − 1 y − 3 − 18
Tam giác ABM vuông tại A
⇔ y 2 − 4 y − 16 = 0 ⇔ y = 2 + 2 5 y = 2 − 2 5

Đáp án A.
Tọa độ điểm M 2 ; − 1 ; 1 trên mặt phẳng (Oxy) là M ' 2 ; − 1 ; 0 .
Đáp án A
⇒ ( P ) : x 12 + y 6 + z 6 = 1 ⇔ x + 2 y + 2 z - 12 = 0