Cho tam giác ABC vuông tại A và góc . Xác định góc giữa hai vectơ .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
\(\cos (\overrightarrow{AB}, \overrightarrow{CA})=\frac{\overrightarrow{AB}.\overrightarrow{CA}}{|\overrightarrow{AB}||\overrightarrow{CA}|}=\frac{-\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}=-\cos (\overrightarrow{AB}, \overrightarrow{AC})=-\cos (120^0)=\frac{1}{2}\)
\(\Rightarrow \angle (\overrightarrow{AB}, \overrightarrow{CA})=60^0\)

\(SB=\sqrt{\left(a\sqrt{3}\right)^2+a^2}=2a\)
\(SC=\sqrt{SA^2+AC^2}=a\sqrt{5}\)
Vì SB^2+BC^2=SC^2
nên ΔSBC vuông tại B
(SBC;ABC)=(SB;BA)=góc SBA=60 độ

b) Xét ΔCBD có CF là đường phân giác ứng với cạnh BD(gt)
nên \(\dfrac{FD}{FB}=\dfrac{CD}{CB}\)(Tính chất tia phân giác của tam giác)(1)
Xét ΔCBA có CE là đường phân giác ứng với cạnh BA(gt)
nên \(\dfrac{EB}{EA}=\dfrac{CB}{CA}\)(Tính chất tia phân giác của tam giác)(2)
Ta có: ΔABC\(\sim\)ΔBDC(cmt)
nên \(\dfrac{CB}{CD}=\dfrac{CA}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{CD}{CB}=\dfrac{CB}{CA}\)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{FD}{FB}=\dfrac{EB}{EA}\)(Đpcm)
a) Xét ΔABC và ΔBDC có
\(\widehat{BCD}\) chung
\(\widehat{BAC}=\widehat{DBC}\)(gt)
Do đó: ΔABC∼ΔBDC(g-g)

a: Xét ΔABC và ΔBDC có
góc C chung
góc BAC=góc DBC
=>ΔABC đồng dạng với ΔBDC
b: FD/FB=CD/CB
EB/EA=CB/CA
mà CD/CB=CB/CA
nên FD/FB=EB/EA