Trong không gian với hệ tọa độ Oxyz, cho A(1;0;2), B(3;1;4), C(3;-2;1). Tìm tọa độ điểm S, biết SA vuông góc với (ABC), mặt cầu ngoại tiếp tứ diện S.ABC có bán kính bằng và S có cao độ âm.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan

CM
2 tháng 10 2017
Đáp án A
Ta có xA' = 2xO-xA = 3; yA' = 2yO-yA = -2; zA' = 2zO-zA=1. Vậy A'(3;-2;1).
Chọn A.
Ta có
Do SA vuông góc với (ABC) nên một VTCP của đường thẳng SA được chọn là
Đường thẳng SA qua A(1;0;2) và có VTCP u → = ( 3 ; 6 ; - 6 ) nên có phương trình tham số là:
Gọi M là trung điểm BC khi đó M là tâm đường tròn ngoại tiếp tam giác ABC. Gọi d là đường thẳng qua M và song song với AS nên d ⊥ (ABC), suy ra d là trục đường tròn ngoại tiếp tam giác ABC.
Trong mặt phẳng (SAM) vẽ đường trung trực của SA cắt d tại I và cắt SA tại N.
Mặt phẳng (ABC) qua A và có một VTPT
nên có phương trình tổng quát là:
mà cao độ của S âm nên S(4;5;-4) thỏa yêu cầu bài toán.