Cho phương trình (m là tham số). Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình trên có nghiệm thuộc đoạn là đoạn . Tính giá trị biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1

Ta có \(ac=-m^2-2< 0\) ; \(\forall m\) nên pt đã cho luôn có 2 nghiệm trái dấu
Mà \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)
\(\Rightarrow2\left|x_1\right|-\left|x_2\right|=4\Leftrightarrow-2x_1-x_2=4\)
Kết hợp với hệ thức Viet: \(x_1+x_2=-m+1\)
\(\Rightarrow\left\{{}\begin{matrix}-2x_1-x_2=4\\x_1+x_2=-m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x_1=-m+5\\x_1+x_2=-m+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=m-5\\x_2=-2m+6\end{matrix}\right.\)
Thay vào \(x_1x_2=-m^2-2\)
\(\Rightarrow\left(m-5\right)\left(-2m+6\right)=-m^2-2\)
\(\Leftrightarrow m^2-16m+28=0\Rightarrow\left[{}\begin{matrix}m=2\\m=14\end{matrix}\right.\)

phương trình vô nghiệm:
\(\Delta'< 0\Leftrightarrow\left(m+1\right)^2-4< 0\Leftrightarrow-2< m-1< 2\Leftrightarrow-1< m< 3\)

\(\Delta'=\left(m+3\right)^2-\left(m^2-3\right)=m^2+6m+9-m^2+3=6m+12\)
Để pt có 2 nghiệm khi m >= -2
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=m^2-3\end{matrix}\right.\)
\(\left(x_1+x_2\right)^2-3x_1x_2=22\Leftrightarrow4\left(m+3\right)^2-3m^2+9=22\)
\(\Leftrightarrow m^2+24m+23=0\Leftrightarrow m=-1\left(tm\right);m=-23\left(l\right)\)

a: Khi m=2 thì (1) sẽ là x^2+2x+1=0
=>x=-1
b:x1+x2=52
=>2m-2=52
=>2m=54
=>m=27

\(\Delta'=b'^2-ac=\left(m-1\right)^2-\left(m^2-3\right)=4-2m\)
Để pt có 2 nghiệm pb : \(m< 2\)
Theo định lí vi - et :
\(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1.x_2=m^2-3\end{matrix}\right.\)
Mà \(x_1=3x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=m-1\\3x^2_2=m^2-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m-1}{4}\\x_2=\pm\dfrac{\sqrt{m^2-3}}{\sqrt{3}}\end{matrix}\right.\)
Chọn A.
Đặt t = x - 1 2 + 1 ≥ 1
Khi đó T = x 2 - 2 x = t 2 - 2
Khi x ∈ 0 ; 1 + 2 2 t h ì t ∈ 1 ; 3
Phương trình: m x 2 - 2 x + 2 + 1 - x 2 + 2 x = 0
trở thành m t + 1 - t 2 + 2 = 0
⇔ m = t 2 - 2 t + 1 ( * )
Đặt f t = t 2 - 2 t + 1 , t ∈ 1 ; 3
Ta có: f ' t = t 2 + 2 t + 2 t + 1 2 > 0 , ∀ t ∈ 1 ; 3
⇒ Hàm số đồng biến trên 1 ; 3
Khi đó, (*) có nghiệm t ∈ 1 ; 3
Suy ra T = 2 b - a = 4