Cho biểu thức . Biểu thức A có giá trị thuộc khoảng nào trong các khoảng dưới đây?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)

a: \(log_49=\dfrac{log9}{log4}=\dfrac{log3^2}{log2^2}=\dfrac{2\cdot log3}{2\cdot log2}=\dfrac{log3}{log2}=\dfrac{b}{a}\)
b: \(log_612=\dfrac{log12}{log6}=\dfrac{log2^2+log3}{log2+log3}=\dfrac{2\cdot log2+log3}{log2+log3}\)
\(=\dfrac{2a+b}{a+b}\)
c: \(log_56=\dfrac{log6}{log5}=\dfrac{log\left(2\cdot3\right)}{log\left(\dfrac{10}{2}\right)}=\dfrac{log2+log3}{log10-log2}\)
\(=\dfrac{a+b}{1-a}\)
a: l o g 4 9 = l o g 9 l o g 4 = l o g 3 2 l o g 2 2 = 2 ⋅ l o g 3 2 ⋅ l o g 2 = l o g 3 l o g 2 = b a log 4 9= log4 log9 = log2 2 log3 2 = 2⋅log2 2⋅log3 = log2 log3 = a b b: l o g 6 12 = l o g 12 l o g 6 = l o g 2 2 + l o g 3 l o g 2 + l o g 3 = 2 ⋅ l o g 2 + l o g 3 l o g 2 + l o g 3 log 6 12= log6 log12 = log2+log3 log2 2 +log3 = log2+log3 2⋅log2+log3 = 2 a + b a + b = a+b 2a+b c: l o g 5 6 = l o g 6 l o g 5 = l o g ( 2 ⋅ 3 ) l o g ( 10 2 ) = l o g 2 + l o g 3 l o g 10 − l o g 2 log 5 6= log5 log6 = log( 2 10 ) log(2⋅3) = log10−log2 log2+log3 = a + b 1 − a = 1−a a+b

a: \(log_{\dfrac{1}{4}}8=log_{2^{-2}}2^3=\dfrac{-3}{2}\cdot log_22=-\dfrac{3}{2}\)
b: \(log_45\cdot log_56\cdot log_68\)
\(=log_45\cdot\dfrac{log_46}{log_45}\cdot\dfrac{log_48}{log_46}\)
\(=log_48=log_{2^2}2^3=\dfrac{3}{2}\)


Bài 1:
\(A=\log_380=\log_3(2^4.5)=\log_3(2^4)+\log_3(5)\)
\(=4\log_32+\log_35=4a+b\)
\(B=\log_3(37,5)=\log_3(2^{-1}.75)=\log_3(2^{-1}.3.5^2)\)
\(=\log_3(2^{-1})+\log_33+\log_3(5^2)=-\log_32+1+2\log_35\)
\(=-a+1+2b\)
Bài 2:
\(\log_{30}8=\frac{\log 8}{\log 30}=\frac{\log (2^3)}{\log (10.3)}=\frac{3\log2}{\log 10+\log 3}\)
\(=\frac{3\log (\frac{10}{5})}{1+\log 3}=\frac{3(\log 10-\log 5)}{1+\log 3}=\frac{3(1-b)}{1+a}\)
Đáp án D.
Dựa vào đáp án ta suy ra 3 < A < 4 .
⇒ 3 < log 2019 < A 2016 = log 2016 + A 2015 < log 2020 < 4
⇒ 3 < log 2020 < A 2017 = log 2017 + A 2016 < log 2021 < 4
Vậy A 2017 ∈ log 2020 ; log 2021 .