Trong không gian với hệ tọa độ Oxyz, cho mặt cầu và các điểm A(1;0;2), B(-1;2;2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax+by+cz+3=0. Tính tổng T=a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án C
Mặt cầu (S) có tâm I(a; b; c) và bán kính R thì có phương trình (x-a)²+(y-b)²+(z-c)²=R².
Theo đề bài ta có R²=9=> R=3.

Chọn A
Gọi là một vec tơ pháp tuyến của mặt phẳng (P).
Theo đề bài ta có mặt phẳng (P) vuông góc với mặt phẳng (α): x-y+z-4=0 nên ta có phương trình a-b+c=0 ó b=a+c
Phương trình mặt phẳng (P) đi qua A(0;1;2) và có véc tơ pháp tuyến là ax+ (a+c) (y-1)+c (z-2) =0
Khoảng cách từ tâm I (3;1;2) đến mặt phẳng (P) là
Gọi r là bán kính của đường tròn giao tuyến giữa mặt cầu (S) và mặt phẳng (P) ta có r²=16-h² ; r nhỏ nhất khi h lớn nhất.
Dấu “=” xảy ra khi a = -2c. => một véc tơ pháp tuyến là => phương trình mặt phẳng (P) là 2x+y-z+1=0.
Vậy tọa độ giao điểm M của (P) và trục x'Ox là:
Đáp án B
Gọi J là hình chiếu vuông góc của I lên AB
A B → - 2 ; 2 ; 0 ⇒ A B : x = 1 - t y = t z = 2 J ∈ A B ⇒ J 1 - t ; t ; 2 ⇒ I J → - t ; t - 2 ; - 1 I J → . A B → = 0 ⇔ 2 t + 2 t - 4 = 0 ⇔ t = 1 ⇒ J ( 0 ; 1 ; 2 )
Thiết diện của (P) với (S) có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ I đến (P) lớn nhất khi và chỉ khi d(I;(P))=d(I;(AB)) =IJ
Vậy (P) là mặt phẳng đi qua J và có VTPT I J →
=> (P): x+(y-1)+(z-2)=0 <=> -x-y-z+3=0
=> T=-3