Trong không gian Oxyz cho hai đường thẳng có phương trình và .Tìm khoảng cách giừa hai đường thẳng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đáp án A
Đường thẳng d 1 đi qua A(1; 1; 1), vecto chỉ phương u 1 → (1; 0; -1)
Đường thẳng d 2 đi qua B( 0; 2;1), vecto chỉ phương u 2 → (-1; 1; 0)
Mặt phẳng (P) chứa hai đường thẳng d 1 ; d 2 nên nhận vecto [ u 1 → ; u 2 → ] = (1;1;1) làm vecto pháp tuyến và đi qua A(1;1;1). Phương trình (P):
1(x - 1) + 1(y – 1) + 1(z - 1) = 0 hay x + y + z – 3= 0
Chọn A.

Chọn A.
Gọi d là đường thẳng cần tìm
d đi qua điểm A(2;1;2) và có vectơ chỉ phương

Chọn A.
Gọi ∆ là đường thẳng cần tìm
Đường thẳng d có vecto chỉ phương a d → = 0 ; 1 ; 1
Ta có A(2;3;3); B(2;2;2)
∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương
Vậy phương trình của ∆ là

Chọn A.
Ta có A(2;3;3); B(2;2;2)
Δ đi qua điểm A(2;3;3) và có vectơ chỉ phương A B → = 0 ; - 1 ; 1
Vậy phương trình của ∆ là x = 2 y = 3 - t z = 3 - t

Chọn C.
*) Gọi A = d1 ∩ (α)
A ∈ d1 ⇒ A(2-a;1+3a;1+2a)
Mà điểm A thuộc mp(α) nên thay tọa độ điểm A vào phương trình mặt phẳng ta được
(2 - a) + 2(1 + 3a) – 3(1 + 2a) – 2= 0
2 – a + 2 + 6a – 3 – 6a – 2 = 0
⇒ a = -1 ⇒ A(3;-2;-1)
*) Gọi B = d2 ∩ (α)
B ∈ d2 ⇒ B(1-3b;-2+b;-1-b)
Mà điểm B thuộc mp(α) nên thay tọa độ điểm B vào phương trình mặt phẳng ta được:
(1 - 3b) + 2(-2 + b) - 3(-1 - b) - 2 = 0
1- 3b – 4 + 2b + 3 + 3b - 2 = 0
⇔ 2b - 2 = 0 ⇔ b = 1 ⇒ B(-2;-1;-2)
*) Đường thẳng d đi qua điểm A(3;-2;-1) và có vectơ chỉ phương
Vậy phương trình chính tắc của d là x - 3 - 5 = y + 2 1 = z + 1 - 1
Đáp án C
Đường thẳng Δ : x = 1 + 2 t y = − 1 − t z = 1 đi qua điểm A 1 ; − 1 ; 1 và có vtcp u → = 2 ; − 1 ; 0
Đường thẳng Δ ' : x = 2 − t y = − 2 + t z = 3 + t đi qua điểm B 2 ; − 2 ; 3 và có vtcp u ' → = − 1 ; 1 ; 1
Vậy d Δ , Δ ' = u → , u ' → . A B → u → , u ' →
u → , u ' → = − 1 ; − 2 ; 1 ⇒ u → , u ' → = 6 ; A B → = 1 ; − 1 ; 2 ⇒ d Δ , Δ ' = 3 6 = 6 2