Trong không gian với hệ tọa độ Oxyz, cho đường thẳng và hai điểm A ( 2;10 ); B ( -2;3;2 ). Viết phương trình mặt cầu đi qua A, B và có tâm thuộc đường thẳng d.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A
Vì A thuộc nên A (1+2t;1-t;-1+t).
Vì B thuộc nên B (-2+3t';-1+t';2+2t').
Thay vào (3) ta được t=1, t'=2 thỏa mãn.

Đáp án C
Gọi B 2 + t ; - 1 - t ; 1 + t A B ¯ = 1 + t ; - t ; t - 2 . Cho A B ¯ . u d ¯ = 0 ⇔ t + 1 - 4 t - 2 t + 4 = 0 ⇔ t = 1 ⇒ A B ¯ = 2 ; - 1 ; - 1
Khi đó d : x - 1 2 = y + 1 - 1 = z - 3 - 1 .

Đáp án A
Phương pháp giải:
Vì điểm M thuộc d nên tham số hóa tọa độ điểm M, tính tổng M A 2 + M B 2 đưa về khảo sát hàm số để tìm giá trị nhỏ nhất
Lời giải:
Vì suy ra
A
M
→
=
(
t
-
2
;
4
-
2
t
;
2
t
)
B
M
→
=
(
t
;
2
-
2
t
;
2
t
-
2
)
Khi đó
Dễ thấy
Vậy Tmin = 10. Dấu bằng xảy ra khi và chỉ khi t = 1 => M(2;0;5)

Đáp án A
Phương pháp giải:
Vì điểm M thuộc d nên tham số hóa tọa độ điểm M, tính tổng M A 2 + M B 2 đưa về khảo sát hàm số để tìm giá trị nhỏ nhất
Lời giải:
Khi đó T = M A 2 + M B 2
Dễ thấy
Dấu bằng xảy ra khi và chỉ khi t =1 => M(2;0;5)

Đáp án C
Gọi C là trung điểm của AB ⇒ C(0;1;-1) ⇒ phương trình đường thẳng qua C và song song với AB là: x 1 = y - 1 - 1 = z + 1 2
Tâm I ∈ a ⇒ I( 1 + 2t; t; -2t )
I A 2 = I B 2 ⇔ t = - 1 ⇒ I - 1 ; - 1 ; 2 R = I A = 17
Vậy phương trình mặt cầu (S) là x + 1 2 + y + 1 2 + z - 2 2 = 17
x + 1 2 + y + 1 2 + z - 2 2 = 17
Đáp án A