giúp mình câu này nha rất gấp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
àm ơn làm ơn hãy giúp mình câu này nha mình rất gấp rồi, mình thề sẽ quỳ gối trước bạn nào giúp mình
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔCDM
a) Xét tam giác ABM và tam giác CDM có:
+ AM = CM (cho M là trung điểm của AC).
+ BM = DM (gt).
+ \(\widehat{AMB}=\widehat{CMD}\) (2 góc đối đỉnh).
\(\Rightarrow\) Tam giác ABM = Tam giác CDM (c - g - c).
b) Ta có: \(\widehat{BAM}=\widehat{DCM}\) (Tam giác ABM = Tam giác CDM).
Mà 2 góc này ở vị trí so le trong.
\(\Rightarrow\) AB // CD (dhnb).
c) Xét tam giác ABN và tam giác ECN có:
+ BN = CN (N là trung điểm của BC).
+ \(\widehat{ANN}=\widehat{ENC}\) 2 góc đối đỉnh).
+ \(\widehat{ABN}=\widehat{ECN}\) (do AB // CD).
\(\Rightarrow\) Tam giác ABN = Tam giác ECN (g - c - g).
\(\Rightarrow\) CE = AB (2 cạnh tương ứng).
Mà AB = CD (Tam giác ABM = Tam giác CDM).
\(\Rightarrow\) CE = CD (cùng = AB).
\(\Rightarrow\) C là trung điểm của DE (đpcm).
d) Xét tam giác BDE có:
+ M là trung điểm của BD (do MD = MB).
+ C là trung điểm của DE (cmt).
\(\Rightarrow\) MC là đường trung bình.
\(\Rightarrow\) MC // BE và MC = \(\dfrac{1}{2}\) BE (Tính chất đường trung bình trong tam giác).
Lại có: MC = \(\dfrac{1}{2}\) MF (do MC = MF).
\(\Rightarrow\) BE = MF.
Xét tứ giác BMEF có:
+ BE = MF (cmt).
+ BE // MF (MC // BE; C thuộc MF).
\(\Rightarrow\) Tứ giác BMEF là hình bình hành (dhnb).
\(\Rightarrow\) ME cắt BF tại trung điểm của mỗi đường (Tính chất hình bình hành).
Mà O là trung điểm của ME (gt).
\(\Rightarrow\) O là trung điểm của BF.
\(\Rightarrow\) 3 điểm B; O; F thẳng hàng (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
4: Xét ΔAMC có
I là trung điểm của AM
N là trung điểm của AC
Do đó: IN là đường trung bình của ΔAMC
Suy ra: IN//MC
hay IN//BC
![](https://rs.olm.vn/images/avt/0.png?1311)
1: Xét ΔABC có AB=AC
nên ΔABC cân tại A
Suy ra: \(\widehat{B}=\widehat{C}\)
Ta có: ΔBAC cân tại A
mà AH là đường trung tuyến ứng với cạnh đáy BC
nên AH là đường cao ứng với cạnh BC
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Tam giác AOC và tam giác BOD có: AO = BO; CO = DO: góc AOC = góc BOD (đối đỉnh)
--> tam giác AOC = tam giác BOD (c.g.c)
--> góc ACO = góc ODB
Mà 2 góc này ở vị trí so le trong
--> AC // BD
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng t/c dtsbn:
\(a+b+c=\dfrac{c}{a+b+1}=\dfrac{a}{b+c+2}=\dfrac{b}{a+c-3}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{1}{2}\\ \Rightarrow\left\{{}\begin{matrix}a+b+c=\dfrac{1}{2}\\2c=a+b+1\\2a=b+c+2\\2b=a+c-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+1=3c\\a+b+c+2=3a\\a+b+c-3=3b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3c=\dfrac{3}{2}\\3a=\dfrac{5}{2}\\3b=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}c=\dfrac{1}{2}\\a=\dfrac{5}{6}\\b=-\dfrac{5}{6}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1: Ta có: \(\widehat{BAD}+\widehat{B}=90^0\)
\(\widehat{BCE}+\widehat{B}=90^0\)
Do đó: \(\widehat{BAD}=\widehat{BCE}\)
2: Ta có: \(\widehat{AHE}+\widehat{BAD}=90^0\)
\(\widehat{ABD}+\widehat{BAD}=90^0\)
Do đó: \(\widehat{AHE}=\widehat{ABD}\)
20 độ
B