Tìm số tự nhiên nhỏ nhất có 5 chữ số và khi số đó chia cho 8 thì dư 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$

Gọi số tự nhiên nhỏ nhất có 3 chữ số cần tìm là a
Theo bài ra ta có: a chia 11 dư 5 \(\Rightarrow\)a=11m+5
\(\Rightarrow\)a+6=(11m+5)+6=11m+11=11(m+1) chia hết cho 11\(\left(m\in N\right)\)
Vì 77 chia hết cho 11 nên (a+6)+77 chia hết cho 11
=> a+83 chia hết cho 11(1)
a chia 13 dư 8 => a=13n+8
=> a+5=(13n+8)+5=13n+13=13(n+1) chia hết cho 13\(\left(n\in N\right)\)
Vì 78 chia hết cho 13 nên (a+5)+78 chia hết cho 13
=> a+83 chia hết cho 13(2)
Từ (1) và (2) suy ra (a+83) chia hết cho BCNN(11;13) => (a+83) chia hết cho 143
=> a=143k - 43 (k \(\in\)N*)
Để a là số tự nhiên nhỏ nhất có 3 chữ số thì k=2
=> a=143 x 2 - 43 = 203

Bài 14: Gọi số cần tìm là x
x chia 5 dư 3
=>x-3⋮5
=>x-3+5⋮5
=>x+2⋮5(1)
x chia 7 dư 5
=>x-5⋮7
=>x-5+7⋮7
=>x+2⋮7(2)
Từ (1),(2) suy ra x+2∈BC(5;7)
mà x nhỏ nhất
nên x+2=BCNN(5;7)
=>x+2=35
=>x=33
Vậy: Số cần tìm là 33
Bài 13: Gọi số cần tìm có dạng là \(\overline{ab}\)
Nếu lấy số đó chia cho tổng các chữ số của nó thì được thương là 3, dư là 5
=>\(\overline{ab}=3\cdot\left(a+b\right)+5\)
=>10a+b=3a+3b+5
=>7a-2b=5
=>(a;b)∈{(1;1);(3;8)}
Thử lại, ta thấy a=3;b=8 thỏa mãn
vậy: Số cần tìm là 38

số đó là : 10005
TICK CHO MIK NHA!
You are late !
Một bạn trả lời trước rùi !