K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

3 tháng 12 2021

\(a,\left\{{}\begin{matrix}\widehat{F}+\widehat{E}=90^0\\\widehat{HDE}+\widehat{E}=90^0\end{matrix}\right.\Rightarrow\widehat{F}=\widehat{HDE}\\ b,\left\{{}\begin{matrix}\widehat{F}+\widehat{E}=90^0\\\widehat{HDF}+\widehat{F}=90^0\end{matrix}\right.\Rightarrow\widehat{E}=\widehat{HDF}\)

Xét tứ giác AEHF có \(\hat{AEH}+\hat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

Xét tứ giác BDHF có \(\hat{BDH}+\hat{BFH}=90^0+90^0=180^0\)

nên BDHF là tứ giác nội tiếp

=>B,D,H,F cùng thuộc một đường tròn

Xét tứ giác HDCE có \(\hat{HDC}+\hat{HEC}=90^0+90^0=180^0\)

nên HDCE là tứ giác nội tiếp

=>H,D,C,E cùng thuộc một đường tròn

Xét tứ giác BFEC có \(\hat{BFC}=\hat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>B,F,E,C cùng thuộc một đường tròn

Xét tứ giác AFDC có \(\hat{AFC}=\hat{ADC}=90^0\)

nên AFDC là tứ giác nội tiếp

=>A,F,D,C cùng thuộc một đường tròn

Xét tứ giác BDEA có \(\hat{BDA}=\hat{BEA}=90^0\)

nên BDEA là tứ giác nội tiếp

=>B,D,E,A cùng thuộc một đường tròn

14 tháng 4 2020

a) Xét tam giác DEH và tam giác DFH ta có:

        DE = DF ( tam giác DEF cân tại D )

        DEH = DFH ( tam giác DEF cân tại D )

        EH = EF ( H là trung điểm của EF )

=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)

=> DHE=DHF(hai góc tương ứng)

Mà DHE+DHF=180 độ  =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )

 b) Xét tam giác MEH và tam giac NFH ta có:

          EH=FH(theo a)

          MEH=NFH(theo a)

  => tam giác MEH = tam giác NFH ( ch-gn)

  => HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )

c) Ta có : +) DM+ME=DE =>DM=DE-ME

                +) DN+NF=DF => DN=DF-NF

Mà DE=DF(theo a)   ;     ME=NF( theo b tam giác MEH=tam giác NFH)

=>DM=DN => tam giác DMN cân tại D 

Xét tam giac cân DMN ta có:

     DMN=DNM=180-MDN/2      (*)

Xét tam giác cân DEF ta có:

     DEF=DFE =180-MDN/2       (*)

Từ (*) và (*) Suy ra góc DMN = góc DEF

Mà DMN và DEF ở vị trí đồng vị

=> MN//EF (dpcm)

d) Xét tam giác DEK và tam giác DFK ta có:

        DK là cạnh chung

        DE=DF(theo a)

    => tam giác DEK= tam giác DFK(ch-cgv)

   =>DKE=DKF(2 góc tương ứng)

   =>DK là tia phân giác của góc EDF       (1)

Theo a tam giac DEH= tam giac DFH(c.g.c)

   =>EDH=FDH(2 góc tương ứng)

   =>DH là tia phân giác của góc EDF        (2)

Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)

Bạn ghi lại đề đi bạn

7 tháng 3 2022

Bài 10. Cho tam giác DEF vuông tại D, có . Tia phân giác của góc F cắt DE tại I. Kẻ IH vuông góc với EF tại H ( ).

a. Chứng minh: DFI = HFI 

b. DFH là tam giác gì? Vì sao?.

c. Qua E kẻ đường thẳng vuông góc với DH tại N. Chứng minh EN // FI.

Bài 11. Cho cân ở A. Trên tia đối của các tia BC và CB lấy thứ tự hai điểm D và E sao cho BD = CE.

a) Chứng minh cân

b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của . 

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE Chứng minh: BH = CK.

d) Chứng minh ba đường thẳng AM, BH, CK đồng quy.  Đây ạ

 

 

 

 

26 tháng 2 2022

bạn ơi mờ quá

a: Ta có: H và E đối xứng nhau qua BA

nên AB là đường trực của HE

Suy ra: AH=AE

hay ΔHAE cân tại H

8 tháng 10 2021

1A; 2B; 3B; 4D; 5A

8 tháng 10 2021

????