Cho cấp số cộng (un) thỏa mãn
Tính tổng 15 số hạng đầu của cấp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Gọi 3 số là a;b;c
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=6\\2b=a+c\\a^2+b^2+c^2=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\a+c=4\\a^2+c^2=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}b=2\\c=4-a\\a^2+\left(4-a\right)^2=26\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=2\\c=5\\a=-1\end{matrix}\right.\left(\text{V\text{ì} }a< c\right)\)
Câu 2: Đặt \(t=x^2\left(t\ge0\right)\)
\(pt:x^4-10\text{x}^2+9m=0\left(1\right)\\ \Leftrightarrow t^2-10t^2+9m=0\left(2\right)\)
Để pt(1) có 4 nghiệm lập thành cấp số cộng thì (2) phải có 2 nghiệm dương phân biệt
\(\)\(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(-5\right)^2-9m>0\\S=10>0\left(T/m\right)\\P=9m>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< \dfrac{25}{9}\\\\m>0\end{matrix}\right.\\ \Rightarrow0< m< \dfrac{25}{9}\)
(2) có 2 nghiệm \(t_1< t_2\)
=> (1) có 4 nghiệm \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)
\(\Rightarrow\sqrt{t_1}=\sqrt{t_2}-\sqrt{t_1}\\ \Rightarrow4t_1=t_2\\ \Rightarrow\left\{{}\begin{matrix}t_1+t_2=10\\4t_1=t_2\\t_1t_2=9m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}t_1=2\\t_2=8\\m=\dfrac{16}{9}\left(t/m\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}u_2+u_3-u_6=7\\u_4+u_8=-14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+d+u_1+2d-u_1-5d=7\\u_1+3d+u_1+7d=-14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1=3\\d=-2\end{matrix}\right.\)
`=> u_n = 3-2(n-1) = -2n+5`
Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Hình như đây là đề thi vào 10 chuyên năng khiếu thành phố hồ chí minh năm 2013-2014 thì phải
Câu 2:
(-4)3 . 22
-64 . 4
= -256.
(-3) . 4 . (-8) . 25
= (4 . 25) . (-3) . (-8)
= 100 . (-3) . (-8)
= -300 . (-8)
= 2400.
(-25) . 12 . 4
= (-25 . 4) . 12
= -100 . 12
= -1200.
(-12) . (-3)
= 36.
(+23) + (+45)
= +(23 + 45)
= 68.
Câu 3:
Ta có: -a = 5
⇒ -(-a) = a = -5
Vì -5 < 4 nên a < b.
Câu 4:
(-7) . (-7) . (-7) = (-7)3
Câu 1:
a, (-4) . |x + 2| = -20
|x + 2| = -20 : (-4)
|x + 2| = 5
x + 2 = 5 , -5.
Ta có:
* Nếu x + 2 = 5
x = 5 - 2
x = 3.
*Nếu x + 2 = -5
x = -5 - 2
x = -7.
Vậy x = -5 , -7.
b, x - 7 = -36
x = -36 + 7
x = -29.
Vậy x = -29.
Chọn D
u 1 + 4 d + 3 u 1 + 2 d − u 1 − d = − 21 3 u 1 + 6 d − 2 u 1 + 3 d = − 34 ⇔ 3 u 1 + 9 d = − 21 u 1 + 12 d = − 34 ⇔ u 1 = 2 d = − 3
Tổng của 15 số hạng đầu:
S 15 = 2.2 + 14. − 3 .15 2 = − 285