cho a và b đều là tổng 2 số chính phương. chứng minh rằng tích ab cũng là tổng 2 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chứng minh rằng nếu a,b đều là tổng của 2 số chính phương thì a.b cũng là tổng của 2 số chính phương
![](https://rs.olm.vn/images/avt/0.png?1311)
a=x²+y², b=m²+n² với x, y, m, n là số tự nhiên khác 0.
Ta có ab=(x²+y²)(m²+n²)=x²m²+x²n²+y²m²+y²n²
=x²m²+y²n²+2xymn+x²n²+y²m²-2xymn
=(xm+yn)²+(xn+ym)² (đpcm)
Cho \(n\) là tổng hai số chính phương. Chứng minh rằng \(n^2\) cũng là tổng của hai số chính phương.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(n=a^2+b^2\)
\(\Rightarrow n^2=\left(a^2+b^2\right)^2-4a^2b^2+4a^2b^2=\)
\(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)+\left(2ab\right)^2=\)
\(=\left(a-b\right)^2\left(a+b\right)^2+\left(2ab\right)^2=\)
\(=\left[\left(a-b\right)\left(a+b\right)\right]^2+\left(2ab\right)^2=\)
\(=\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
Giả sử: a=m2+n2
b=c2+d2
=> m,n,c,d∈Z
ab=(m2+n2)(c2+d2)
ab=m2(c2+d2)+n2(c2+d2)
ab=(m2c2+m2d2)+(n2c2+n2d2)
ab=(mc)2+(md)2+(nc)2+(nd)2
ab=(mc)2+2mcnd+(nd)2+(nc)2−2ncmd+(md)2
ab=(mc+nd)2+(nc−md)2
Vì m,n,c,d∈Z=>mc+nd∈Z,mc−nd∈Z
Vậy tích ab là tổng hai số chính phương